首页|爆轰双向驱动双状态并行技术的原理性研究

爆轰双向驱动双状态并行技术的原理性研究

扫码查看
爆轰驱动激波风洞是用来产生高超声速高焓试验气流的地面试验装置,通常分为正向爆轰驱动激波风洞和反向爆轰驱动激波风洞两种.本文针对单独正向或反向驱动模式的不足,提出一种新型的爆轰双向驱动模式,同时利用爆轰波的高能波阵面和泰勒稀疏波尾部平稳端,在一次试验中同时实现中焓与高焓两种高超声速试验气流.本文利用高温热化学反应流动数值计算技术,模拟并分析了爆轰双向驱动激波风洞中的关键波动力学过程,数值计算结果表明,爆轰双向驱动技术是可行的,而且正向驱动端和反向驱动端的状态调整具有相对独立性,可以覆盖中高焓大范围跨流域试验能力.
Principle study on the bidirectional detonation driving technique for dual-state synchronous-running shock tunnels
Detonation-driven shock tunnels are ground-based test facilities used to generate hypersonic and high-enthalpy test flows.They are usually divided into forward detonation-driven(FDD)shock tunnel and backward detonation-driven(BDD)shock tunnel.Aiming at avoiding the deficiency of the driving mode,either FDD or BDD,a new bidirectional detonation driving(BiDD)technique is proposed in this paper.Two test flows of medium enthalpy and high enthalpy are realized at the same time in one running of BiDD by synchronously using the high-energy wave front and the steady section following the end of Taylor expansion wave of a detonation.In this paper,the key wave dynamic processes in a BiDD shock tunnel are simulated and analyzed by using the numerical algorithms for high-temperature thermos-chemically reacting flow.The numerical results indicate that the proposed BiDD driving technique is feasible.In addition,the state adjustments of the BDD and FDD subsections are relatively independent,which can cover the cross-flow-regime test capacity of total enthalpies between medium and high levels.

high-enthalpy test flowbidirectional detonation drivershock tunnelthermo-chemically reactive flowtailored interface condition

杨帆、林明月、胡宗民、韩桂来

展开 >

中国科学院力学研究所高温气体动力学国家重点实验室,北京 100190

中国科学院大学工程科学学院,北京 100049

高焓试验气流 爆轰双向驱动 激波风洞 热化学反应流动 缝合界面条件

国家自然科学基金国家重点研发计划

121723652019YFA0405204

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(3)
  • 55