首页|数据驱动储能电池新材料的筛选和设计

数据驱动储能电池新材料的筛选和设计

扫码查看
数据驱动新材料产业发展是第四研究范式促进材料创新,加快材料应用的多学科多领域交叉融合的技术热点。机器学习(machine learning,ML)作为一种重要的数据驱动方法,其结合第一性原理计算在材料科学、化学、物理学和计算机等跨学科领域展现出巨大的优势,为储能电池新材料的快速发展带来了新的机遇。为帮助研究人员了解这一新兴领域,本文系统地详述了高通量计算筛选和ML在储能电池材料研究中的最新进展,概括和总结了目前国内外应用较为广泛的在线材料数据库,举例介绍了新数据库的多层次构建,分析了目前数据采集方面的一些难点。论文进一步介绍了ML方法在高通量计算筛选、材料性质预测、材料结构与电化学性能构效关系研究和材料设计方面的应用实例,最后分析讨论了当前ML在储能电池领域面临的一些挑战,并展望了该领域的前沿研究。
Data-driven approaches enabling the screening and design of promising materials for energy storage batteries
Data-driven approaches enabling the development of new materials are a research focus of the fourth research paradigm that promotes material innovation and accelerates the cross-integration of multidisciplinary and multifield material applications.As a crucial data-driven approach Integrating the first-principles method,Machine learning(ML)shows great potential to address the issues in interdisciplinary fields,such as materials science,chemistry,physics,and computer science,and elicits a promising avenue for the rapid development of new materials for energy storage batteries.To better understand this emerging field,this review systematically outlines the latest progress in high-throughput computational screening and ML that show great potential in the research of energy storage battery materials.Moreover,online material databases that are widely used in the discovery and design of materials are summarized,the construction of a new database is presented along with an example,and several issues encountered during data collection are discussed.Furthermore,this review discusses in detail the application examples associated with ML methods in terms of high-throughput computational screening,material property prediction,structure-electrochemical performance relationship,and material design.Finally,the challenges of ML in the field of energy storage batteries are analyzed and discussed.In addition,we provide perspectives on the applications of ML in energy storage materials.

machine learningenergy storage batterieshigh-throughput computational screening

张奇、彭超、薛冬峰

展开 >

中国科学院深圳先进技术研究院多尺度晶体材料研究中心,深圳 518055

ML 储能电池 高通量计算筛选

国家自然科学基金重点项目国家自然科学基金国际(地区)合作与交流项目国家自然科学基金委中德科学中心中德合作交流项目(2021)国家自然科学基金青年基金中国博士后科学基金面上项目(第七十三期)

5183200752220105010M-0755522033032023M733647

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(4)
  • 80