首页|基于全生命周期评价的中国制氨路线碳排放、能源效率研究及展望

基于全生命周期评价的中国制氨路线碳排放、能源效率研究及展望

扫码查看
我国实现双碳目标的核心在于能源系统的低碳化和清洁化.未来风电、光伏电等一次能源大比例接入电网,其波动性、间歇性等特点使得可跨季广域消纳储能技术的发展成为刚需.氨的稳定性、易存储、输储设施完善等特性使其成为极具竞争力的化学储能介质,有望破解当前氢储运难题,助力实现"碳中和、碳达峰"目标.目前面向我国规模化应用的中国制氨路线生命周期评估工作较少,缺乏考虑细分环节的合成氨路线的全生命周期碳排放及能效等指标的评估与分析.针对上述氨储能技术发展存在的机遇和挑战,本文建立各主要阶段的合成氨全生命周期评估(lifecycle assessment,LCA)集成模型,结合低碳排技术对不同制氨路线生命周期间的一次能源投入及碳排放进行评估与分析.通过核算煤制氨(R1)、天然气制氨(R2)、市电制氨(R3)及可再生电力制氢合成氨(R4)四种技术路线的碳排放及能源效率,并对关键参数进行敏感度分析,确定造成碳排放的关键环节和关键因素,提出减少碳排放的技术改进建议.研究表明,未采用碳捕获与封存技术(carbon capture and storage,CCS)的煤制氨(R1-w/o CCS)与天然气制氨路线(R2-w/o CCS)碳排放则分别高达4.190和2.356kg CO2/kg NH3,R3路线碳排放高达6.384kg CO2/kg NH3,分别以光伏电站(R4-PV)和风力发电站(R4-Wind)为电力输入的可再生电力制氢合成氨路线碳排放分别为0.569和0.335kg CO2/kg NH3.结合CCS技术后,R1-w/CCS和R2-w/CCS路线碳排放可分别降低61.8%和55.4%,但因CO2捕获、运输和封存带来的额外能耗使每功能单位氨生产的化石能源消耗量相应增长4.2%和5.8%,生命周期能源效率分别降低1.6%和2.5%.本文从全生命周期的碳排放和能效角度出发,通过定义统一系统边界提高模型的精准度与可对比度,为不同制氨路线的工艺改进情景提供了可靠的分析.
Carbon emission and energy efficiency analysis of ammonia produc-tion routes in China from life-cycle perspective and prospects
The cornerstone of China's dual-carbon goal lies in the decarbonization and cleansing of the energy system.In the future,with wind power,photovoltaic power and other primary energy crowding into the grid,the volatility and intermittency force cross-seasonal wide-area energy storage technology becoming a pressing need.The characteristics of ammonia,such as stability,susceptibility to storage,and integrity of transmission and storage facilities,enable it to become a highly competitive chemical energy storage media,which is promising to break the current hydrogen storage and transportation challenges,and help realize the dual-carbon goal.Little work has been done on the life cycle assessment of ammonia pathway for large-scale application in China,lacking the assessment and analysis of carbon emission and energy efficiency indexes of the whole life cycle of ammonia pathway taking into account the subsections.Aiming at the above opportunities and challenges in the development of ammonia energy storage technology,we establish a life cycle assessment(LCA)integrated model of ammonia production at each major stage,evaluate and analyze the primary energy input and carbon emission of different ammonia production routes during their life cycle by combining with low carbon emission technology.This work identifies the key stages and factors contributing to carbon emissions and proposes technological improvements to reduce them,mainly through accounting for carbon emissions and energy efficiency of four technology routes,namely,ammonia from coal(R1),ammonia from natural gas(R2),ammonia from hydrogen driven by utility power(R3),and ammonia from hydrogen driven by renewable electricity(R4),and sensitivity analyses of the key parameters.It is found that the carbon emissions of the coal-to-ammonia(R1-w/o CCS)and natural gas-to-ammonia(R2-w/o CCS)routes without CCS are as high as 4.190 and 2.356 kg CO2/kg NH3,respectively,with the R3 route emitting 6.384,and 0.569 and 0.335 kg CO2/kg NH3 for the renewable power hydrogen to ammonia route with photovoltaic power plant(R4-PV)and wind power plant(R4-Wind)as the power inputs,respectively.This work provides a reliable analysis of process improvement scenarios for different ammonia production pathways by defining uniform system boundaries to improve the accuracy and comparability of the model in terms of carbon emissions and energy efficiency throughout the life cycle.

ammonialife cycle assessmentenergy efficiency analysisenergy consumptionCO2 emissions

刘梦华、黄逍、李爽、史翊翔、喻朝庆、蔡宁生

展开 >

清华大学能源与动力工程系,北京 100084

清华大学山西清洁能源研究院,太原 030032

海南大学生态与环境学院,海口 570228

合成氨 生命周期评价 能效分析 能源消耗 碳排放

国家重点研发计划国家自然科学基金鄂尔多斯-清华碳中和创新合作研究计划国家高层次人才专项支持计划清华大学能源与动力工程系青年优秀人才支持计划资助项目

2022YFB4202201T2241003

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(7)