首页|面向人机协同能效车间调度的群智能优化算法

面向人机协同能效车间调度的群智能优化算法

扫码查看
随着制造企业的智能化,"人-机-物"全面互联融合的新发展模式成为新一代智能制造的方向.同时,工人与机器人协同制造已普遍存在于现代制造车间,相较于传统的人机独立生产模式增加了人机资源配置的问题,使得调度问题更加复杂,对算法设计带来了新的挑战.因此,本文考虑人机协同制造的特点建立了人机协同能效车间调度问题,以最小化最大完工时间和总能耗为优化目标,提出了一种群智能协同优化算法求解.该算法包含如下特点:首先,提出了一种双阶段协同搜索框架,即第一阶段以群智能优化实现快速收敛并构建精英存档,第二阶段以反馈协同搜索在精英解附近进行多方位勘探增加分布性.其次,针对人机资源配置问题提出了多层协同搜索算子实现快速收敛.最后,针对问题特性,提炼问题知识,设计多策略协同初始化方法提供高质量初始种群,同时提出多操作协同局部搜索高效优化两个目标.为了验证提出算法的有效性,本文生成了 15个不同规模的案例,并进行了参数、消融和对比仿真实验.结果表明,本文提出了多种的协同方法能有效提升算法性能和搜索质量,通过对比最新相关算法验证了所提算法的有效性,为人机协同制造的调度排产在方法上提供了可靠的指导.
A swarm intelligence optimization algorithm for human-robot collaborative energy-efficient shop scheduling
With the intelligentization of manufacturing enterprises,the new development mode of"human-robot-cyber"comprehensive interconnection and integration has become the direction of the new generation of intelligent manufacturing.Collaborative manufacturing between workers and robots has become a common practice in modern manufacturing workshops,leading to increased challenges in resource allocation due to the departure from traditional,human-machine independent production scheduling mode.This complexity poses new challenges for algorithm design.Therefore,this paper addresses the characteristics of human-robot collaborative energy-efficient shop scheduling problem.The optimization objectives are to minimize the maximum completion time and total energy consumption.To achieve this,a swarm intelligence optimization algorithm is proposed.This algorithm features the following components:Firstly,a two-stage collaborative search framework is present.In the first stage,swarm intelligence optimization is employed to achieve rapid convergence and build an elite archive.In the second stage,a feedback collaborative search is conducted near elite solutions to explore a wide range of solutions.Secondly,multiple collaborative search operators are introduced to address human-robot resource allocation issues for rapid convergence.Lastly,in consideration of the problem's characteristics,problem-specific knowledge is extracted,and a multi-strategy collaborative initialization method is designed to provide a high-quality initial population.Additionally,multiple collaborative local search operations are proposed for efficient optimization of the two objectives.To validate the effectiveness of the proposed algorithm,15 cases of varying sizes are generated.The conducts parameter tuning,ablation,and comparative simulation experiments are adopted.The results demonstrate that the various collaborative methods proposed in this paper effectively enhance algorithm performance and search quality.Through comparisons with the latest relevant algorithms,the effectiveness of the proposed algorithm is evaluated,providing reliable guidance for scheduling and production in human-robot collaborative manufacturing.

intelligent manufacturinghuman-robot collaborative shop schedulingenergy-efficient schedulingcooperative optimization

王凌、李瑞、陈靖方

展开 >

清华大学自动化系,北京 100084

智能制造 人机协同制造 能效调度 协同优化

国家重点研发计划国家自然科学基金

2023YFB330800262273193

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(9)