首页|稀土镀层永磁废料色选识别技术研究

稀土镀层永磁废料色选识别技术研究

扫码查看
稀土废料具有种类多、成分杂等显著特征,高效分类分级获取低杂质含量的中间物料是提高稀土回收效率、降低全过程碳排放的关键.本研究以最普遍的含镀层稀土永磁废料为对象,系统研究了光强、角度等因素对废料识别效率的影响,进一步提出基于多维度光强动态自主补偿的方法,开发出针对典型稀土废料的限定环境要素的阈值优化算法.研究结果表明,在光强范围82~161 lux内,模型相关系数高达R2=0.97,分选效率可达100%.本研究可以为稀土废料高效分选富集和低碳循环提供新思路.
Study on color separation and identification technology for rare-earth permanent magnet waste
Rare-earth waste exhibits significant diversity in types and complex compositions.Efficient classification and grading of rare-earth waste produce intermediate materials with reduced impurity content,which is essential for improving recycling efficiency and lowering carbon emissions.This study focuses on the general rare-earth permanent magnet waste,NdFeB,in different coatings and investigates efficiency factors such as light intensity and capture angle.The study proposes a novel method based on multidimensional light-intensity dynamic self-compensation.A threshold optimization algorithm is developed to mitigate environmental factors for typical rare-earth waste.The research findings demonstrate that within the light-intensity range of 82-161 lux,the model achieves a high correlation coefficient of up to R2=0.97,with sorting efficiency reaching 100%.This study provides new insights into the efficient sorting and enrichment of rare-earth waste and promotes low-carbon recycling efforts.

rare-earth permanent magnet wastecoated NdFeBmachine vision identificationcyclical utilization

王丽婷、陶天一、曹宏斌、孙峙

展开 >

中国科学院大学化学工程学院,北京 100049

战略金属资源绿色循环利用国家工程研究中心,北京 100190

中国科学院化学化工科学数据中心,北京 100190

北京市过程污染控制工程技术研究中心,北京 100190

展开 >

稀土永磁废料 镀层钕铁硼 机器视觉识别 循环利用

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(11)