首页|Au纳米粒子阵列热等离激元效应的等效计算与表征

Au纳米粒子阵列热等离激元效应的等效计算与表征

扫码查看
金属等离激元微纳结构的热等离激元效应可作为纳米尺度的可控局域热源.本文基于有限元法利用COMSOL Multiphysics软件的波动光学和传热模块,计算了Au纳米粒子二维阵列模型的吸收截面、平均能量和温度分布.结果表明,粒径一定时,模型的平均能量随阵列数的增加呈先增大后减小至趋于稳定的规律.粒距越大,达到稳定平均能量对应的阵列数越大.当Au纳米粒子二维阵列模型足够大时,平均能量与粒距无关,仅取决于粒径大小.为了计算得到Au纳米粒子二维阵列产生的局域热,创新构建散热模型与绝热模型并进行等效处理,在散热模型中得到的1000 ns弛豫时间代入绝热模型计算得到局域热瞬态温度为近82 K.通过可视化表征不同温度梯度的光阳极表面与分解水产氧量体积分数的对应关系,进一步证实了金属纳米粒子的热等离激元效应促进光电极界面反应的作用.
Equivalent calculation and characterization of the thermoplasmonics effect of Au nanoparticle arrays
The thermoplasmonics effect of metal plasmon micro-nanostructures can be used as a controllable localized heat source at the nanoscale.Based on the finite element method,this paper used the wave optics and heat transfer module of COMSOL Multiphysics software to calculate the absorption cross section,average energy and temperature distribution of the Au nanoparticle two-dimensional array model.The results show that when the particle size is constant,the average energy of the model first increases and then decreases to become stable as the number of arrays increases.The larger the particle distance is,the larger the number of arrays corresponding to stable average energy is.When the Au nanoparticle two-dimensional array model is large enough,the average energy is not related to the particle distance,but only to the particle size.In order to calculate the localized heat generated by the two-dimensional array of Au nanoparticles,a heat dissipation model and an adiabatic model were innovatively constructed and equivalently processed.The 1000 ns relaxation time obtained in the heat dissipation model was substituted into the adiabatic model,and the transient temperature of localized heat was calculated to be nearly 82 K.The corresponding relationship between the photoanode surface with different temperature gradients and the oxygen production volume fraction of decomposed water is visually characterized.This further confirms that the thermoplasmonics effect of metal nanoparticles promotes the photoelectrode interface reaction.

Au nanoparticle arraythermoplasmonics effectlocalized heatheat dissipation modeladiabatic model

赵越、桑丽霞、任志勇

展开 >

北京工业大学传热强化与过程节能教育部重点实验室及传热与能源利用北京市重点实验室,北京 100124

Au纳米粒子阵列 热等离激元效应 局域热 散热模型 绝热模型

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(12)