首页|蓄热式加热炉瞬态熵产分布与燃烧参数影响分析

蓄热式加热炉瞬态熵产分布与燃烧参数影响分析

扫码查看
本文以蓄热式加热炉为研究对象,建立了考虑烧嘴换向的单元炉膛空间热过程瞬态模型,模拟了炉宽方向传热的不均匀性,开发了熵产和㶲平衡的数值计算方法,明晰了燃烧、流动和传热过程的熵产大小、空间分布和能量耗散机制;基于该单元模型模拟了蓄热式炉钢坯加热全过程,获得了各项㶲损失和㶲效率沿炉长的分布和全炉㶲平衡;探讨了烧嘴射流速度、富氧浓度和高炉煤气掺烧天然气等节能途径对㶲效率的影响。结果表明,燃烧和辐射传热的不可逆性是炉内熵产的主要因素,在钢坯温度较低时,辐射熵产约占单元炉膛总熵产的70。5%,提高钢坯装炉温度可有效降低该熵产;在钢坯温度较高时,燃烧熵产占主导,约为炉膛总熵产的59。9%,优化燃烧是降低熵产的主要措施。烧嘴换向后新火焰稳定约需15~20 s,由于原火焰被推出、炉温波动和质量扩散的加剧,对炉膛㶲效率的稳定产生了重要影响,蓄热器需具有足够高的㶲回收效率才能保证加热单元整体㶲效率的提升。对全炉而言,第一类㶲损失主要发生在均热段,由高温烟气带出炉膛导致,占该段输入㶲45。6%,利用均热段的烟气预热其他段的空气和煤气,可有效降低第一类㶲损失;第二类㶲损失主要发生在预热段,辐射熵产是其主要原因,占该段输入㶲的17。4%,热送热装是降低第二类㶲损失的主要方法。保持单元炉膛其他参数不变,当射流速度为19m/s时㶲效率和热效率最高;当富氧浓度提升至35%时,㶲效率和热效率分别提高了4。1%和5。5%;高炉煤气掺混10%的天然气提高了燃烧温度和钢坯表面热流,但㶲效率和热效率降低1。2%和4。4%,反而不利于加热炉的节能。该研究为加热炉能效评价与工艺优化提供了一些新的思路。
Influence of transient entropy generation distribution and combustion on the parameters of a regenerative reheating furnace
In this work,the entropy generation analysis method was applied to calculate the entropy generation rate distribution and exergy equilibrium of a typical heating unit in a regenerative reheating furnace.The entropy generation rate of the heat conduction,convective heat transfer,viscous dissipation,mass diffusion,combustion,and radiative processes were numerically determined.The transient change of exergy efficiency of the heating unit and the distribution of exergy loss and exergy efficiency along the furnace length during the billet heating process were investigated.The effects of gas jet velocity,oxygen-enriched concentration,and blast furnace gas combustion with natural gas on the furnace efficiency were investigated.The results showed that when the billet temperature is low,the radiative entropy generation accounts for 70.5%of the total entropy generation of the heating unit.Improving the billet loading temperature can effectively reduce the entropy generation rate.When the billet temperature is high,entropy generation during combustion is dominant,accounting for 59.9%,and the optimization of combustion is the main measure to reduce entropy generation.The new flame takes approximately 15-20 s to stabilize after burner reversal.Because the original flame is pushed out,the furnace temperature fluctuates,and mass diffusion intensifies,which have serious impacts on the stabilization of the furnace exergy efficiency;the regenerators need to have a sufficiently high recovery efficiency to ensure that the overall exergy efficiency of the heating unit can be improved.For the entire furnace,the first type of furnace exergy loss is approximately 33.4%,mainly in the soaking zone and caused by the high-temperature flue gas leaving the furnace,accounting for 45.6%of the input exergy in the soaking zone.The second type of exergy loss is approximately 24.4%,mainly in the preheating section and caused by radiative entropy generation,accounting for 17.4%of the input energy in the preheating zone.Keeping other parameters unchanged,when the jet velocity is 19 m/s,the heating unit has the highest exergy and thermal efficiency.When the oxygen concentration is increased to 35%,the exergy and thermal efficiency of the heating unit are increased by 4.1%and 5.5%,respectively.Blast furnace gas combustion with 10%natural gas can increase the furnace temperature and surface heat flux of billet,but the exergy and thermal efficiency are reduced by 1.2%and 4.4%,respectively,which is unfavorable to the energy saving of the reheating furnace.This study provides some new insights into the energy saving of reheating furnaces.

regenerative reheating furnacenumerical simulationtransient entropy generationexergy efficiencycombustion parameter analysis

王帝杰、向永光、张欣茹、朱有鑫、姜泽毅

展开 >

北京科技大学能源与环境工程学院,北京 100083

河钢集团唐钢公司信息自动化部,唐山 063000

北京科技大学北京市节能环保工程技术研究中心,北京 100083

北京科技大学冶金工业节能减排北京市重点实验室,北京 100083

展开 >

蓄热式加热炉 数值模拟 瞬态熵产 㶲效率 燃烧参数分析

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(12)