首页|基于混联驱动方法的TC4叶片机器人磨抛加工材料去除深度预测

基于混联驱动方法的TC4叶片机器人磨抛加工材料去除深度预测

扫码查看
随着机器人技术的不断进步,机器人砂带磨抛正逐渐成为叶片类复杂零件加工的新方式.机器人砂带磨抛过程中,材料去除深度(MRD)的准确预测是实现机器人砂带磨抛高精度闭环作业的关键问题之一.传统机理预测模型考虑了先验知识,但精度较低;而纯数据驱动模型预测精度高,但仍存在可解释性较差、泛化能力弱等问题.为此,本文提出了一种将机理模型和数据驱动方法混联的机器人砂带磨抛材料去除深度预测方法.首先,基于磨粒微观形貌与Hertz接触方法建立了机器人砂带磨抛材料去除深度机理模型;在此基础上,将机理模型预测结果及其预测残差输入至极端梯度提升(XGBoost)数据驱动模型中实现对机理模型残差的预测,从而实现机理模型与数据驱动方法的串联;同时,将数据驱动模型预测残差与机理模型预测值进行并联,最终实现混联驱动MRD预测.此外,使用麻雀搜索算法(SSA)优化混联模型的超参数以提升模型的预测精度;在Ti-6A1-4V试件与压气机叶片上的磨抛实验表明,所提预测方法的均方根误差(RMSE)优于机理模型71.66%,优于数据驱动模型64.73%,并在小样本学习、模型泛化性等方面表现出显著优势.
Material removal depth prediction in robotic belt grinding of TC4 blade based on hybrid-driven model
Robot abrasive belt grinding is increasingly recognized as an effective technique for machining complex blade parts,driven by advancements in robot technology.Accurate prediction of material removal depth(MRD)is crucial for ensuring precise closed-loop operations in robot belt grinding.Traditional MRD prediction models,which rely on prior knowledge,often lack accuracy.Conversely,purely data-driven models achieve high accuracy but fall short in terms of interpretability and generalization.This study introduces a novel hybrid approach to predict MRD in robotic belt grinding,combining a mechanism model with a data-driven method.Initially,the mechanism model is developed based on abrasive particle morphology and Hertz contact theory.The predictions and residuals of this model are then fed into an XGBoost data-driven model,which predicts the residuals of the mechanism model.This creates a sequential combination of the two models.Simultaneously,the residuals predicted by the data-driven model and the values predicted by the mechanism model are combined in parallel to deliver a hybrid MRD prediction.To enhance the accuracy of the hybrid model,the sparrow search algorithm is employed to optimize its hyperparameters.Experimental tests conducted on Ti-6A1-4V specimens and compressor blades demonstrate that the proposed hybrid method significantly reduces the root mean square error by 71.66%compared to the mechanism model alone and by 64.73%compared to the data-driven model.Furthermore,the hybrid approach excels in few-shot learning scenarios and model generalization.

blade grindingrobotic grindingmaterial removalensemble learninghybrid-driven

朱佳慧、严思杰、杨泽源、褚尧、徐小虎、丁汉

展开 >

华中科技大学机械科学与工程学院,智能制造装备与技术全国重点实验室,武汉 430074

华中科技大学无锡研究院叶片智能制造研究所,无锡 214174

武汉大学工业科学研究院,武汉 430072

叶片磨抛 机器人磨抛 材料去除 集成学习 混联驱动

2024

中国科学(技术科学)
中国科学院

中国科学(技术科学)

CSTPCD北大核心
影响因子:0.752
ISSN:1674-7259
年,卷(期):2024.54(12)