中国科学:信息科学(英文版)2024,Vol.67Issue(3) :132-150.DOI:10.1007/s11432-023-3872-9

Constrained reinforcement learning with statewise projection:a control barrier function approach

Xinze JIN Kuo LI Qingshan JIA
中国科学:信息科学(英文版)2024,Vol.67Issue(3) :132-150.DOI:10.1007/s11432-023-3872-9

Constrained reinforcement learning with statewise projection:a control barrier function approach

Xinze JIN 1Kuo LI 1Qingshan JIA1
扫码查看

作者信息

  • 1. Department of Automation,Tsinghua University,Beijing 100084,China
  • 折叠

Abstract

Safety is a critical issue for reinforcement learning(RL),as it may be risky for some actual appli-cations if the learning process involves unsafe exploration.Instead of formulating constraints as expectation-based in constrained RL,considering statewise safety in constrained RL is more meaningful.This work aims to address the issue of safe projection in RL by introducing a control barrier function that inherently learns a safe policy through a set certificate.We seek to analyze some theoretical properties of safe projection in the learning process,including convergence and performance bound,and extend the discussion into ensembles and guided controllers.Moreover,we approach analytical solutions for deterministic and stochastic system dynamics.Experimental results in different tasks show that the proposed method achieves better effects in terms of both performance and safety.

Key words

reinforcement learning/safe projection/control barrier function

引用本文复制引用

基金项目

国家重点研发计划(2022YFA1004600)

国家自然科学基金(62125304)

国家自然科学基金(62073182)

国家自然科学基金(62192751)

清华大学自主科研项目()

出版年

2024
中国科学:信息科学(英文版)
中国科学院

中国科学:信息科学(英文版)

CSTPCDEI
影响因子:0.715
ISSN:1674-733X
参考文献量32
段落导航相关论文