中国科学:信息科学(英文版)2024,Vol.67Issue(3) :151-162.DOI:10.1007/s11432-023-3845-6

Segment-wise learning control for trajectory tracking of robot manipulators under iteration-dependent periods

Fan ZHANG Deyuan MENG Kaiquan CAI
中国科学:信息科学(英文版)2024,Vol.67Issue(3) :151-162.DOI:10.1007/s11432-023-3845-6

Segment-wise learning control for trajectory tracking of robot manipulators under iteration-dependent periods

Fan ZHANG 1Deyuan MENG 1Kaiquan CAI2
扫码查看

作者信息

  • 1. The Seventh Research Division,Beihang University,Beijing 100191,China;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
  • 2. School of Electronics and Information Engineering,Beihang University,Beijing 100191,China
  • 折叠

Abstract

This paper is concerned with the amplitude boundedness problem of adaptive iterative learning control(AILC)for robot manipulators operating with iteration-dependent periods.By introducing virtual memory slots for storing historical data,a practical AILC method is proposed to achieve the segment-wise learning.This method requires less memory storage for historical information of previous iterations,especially in comparison with that of the conventional AILC methods using point-wise learning strategies.It is shown that not only the energy boundedness but also the amplitude boundedness of estimates and inputs of practical AILC can be guaranteed.Moreover,the practical AILC method can achieve the perfect tracking objective regardless of iteration-dependent periods when the robot manipulators have a persistent full learning property.In addition,a solution to the visual manipulator platform is provided and deployed based on Coppeliasim and Matlab,which helps to show the amplitude boundedness of learning results and the perfect tracking performances of the proposed practical AILC method for robot manipulators.

Key words

amplitude boundedness/iteration-dependent period/iterative learning control/robot manipu-lator/segment-wise/virtual memory slot

引用本文复制引用

基金项目

国家自然科学基金(U2333215)

国家自然科学基金(62273018)

国家重点研发计划(2021YFB2601703)

Science and Technology on Space Intelligent Control Laboratory(HTKJ2022KL502006)

出版年

2024
中国科学:信息科学(英文版)
中国科学院

中国科学:信息科学(英文版)

CSTPCDEI
影响因子:0.715
ISSN:1674-733X
参考文献量28
段落导航相关论文