中国科学:信息科学(英文版)2024,Vol.67Issue(5) :52-64.DOI:10.1007/s11432-021-3724-0

Granger causal representation learning for groups of time series

Ruichu CAI Yunjin WU Xiaokai HUANG Wei CHEN Tom Z.J.FU Zhifeng HAO
中国科学:信息科学(英文版)2024,Vol.67Issue(5) :52-64.DOI:10.1007/s11432-021-3724-0

Granger causal representation learning for groups of time series

Ruichu CAI 1Yunjin WU 2Xiaokai HUANG 2Wei CHEN 2Tom Z.J.FU 2Zhifeng HAO3
扫码查看

作者信息

  • 1. School of Computer Science,Guangdong University of Technology,Guangzhou 510006,China;Peng Cheng Laboratory,Shenzhen 518066,China
  • 2. School of Computer Science,Guangdong University of Technology,Guangzhou 510006,China
  • 3. School of Computer Science,Guangdong University of Technology,Guangzhou 510006,China;College of Science,Shantou University,Shantou 515063,China
  • 折叠

Abstract

Discovering causality from multivariate time series is an important but challenging problem.Most existing methods focus on estimating the Granger causal structures among multivariate time series,while ignoring the prior knowledge of these time series,e.g.,the group of the time series.Focusing on discov-ering the Granger causal structures among groups of time series,we propose a Granger causal representation learning method to solve this problem.First,we use the multiset canonical correlation analysis method to learn the Granger causal representation of each group of time series.Then,we model the Granger causal relationships among the learned Granger causal representations using a recurrent neural network with tem-poral information.Finally,we formulate the above two stages into one unified optimization problem,which is efficiently solved using the augmented Lagrangian method.We conduct extensive experiments on synthetic and real-world datasets to validate the correctness and effectiveness of the proposed method.

Key words

Granger causal discovery/Granger causal representation learning/time series data/recurrent neural network/multiset canonical correlation analysis

引用本文复制引用

基金项目

National Key R&D Program of China(2021ZD0111501)

National Science Fund for Excellent Young Scholars(62122022)

National Natural Science Foundation of China(61876043)

National Natural Science Foundation of China(61976052)

National Natural Science Foundation of China(62206064)

Major Key Project of PCL(PCL2021A12)

出版年

2024
中国科学:信息科学(英文版)
中国科学院

中国科学:信息科学(英文版)

CSTPCDEI
影响因子:0.715
ISSN:1674-733X
参考文献量39
段落导航相关论文