中国科学:信息科学(英文版)2024,Vol.67Issue(9) :1-36.DOI:10.1007/s11432-023-3956-3

Deep learning for code generation:a survey

Huangzhao ZHANG Kechi ZHANG Zhuo LI Jia LI Yongmin LI Yunfei ZHAO Yuqi ZHU Fang LIU Ge LI Zhi JIN
中国科学:信息科学(英文版)2024,Vol.67Issue(9) :1-36.DOI:10.1007/s11432-023-3956-3

Deep learning for code generation:a survey

Huangzhao ZHANG 1Kechi ZHANG 1Zhuo LI 1Jia LI 1Yongmin LI 1Yunfei ZHAO 1Yuqi ZHU 1Fang LIU 2Ge LI 1Zhi JIN1
扫码查看

作者信息

  • 1. Key Lab of High Confidence Software Technologies(Peking University),Ministry of Education,Beijing 100871,China;School of Computer Science,Peking University,Beijing 100871,China
  • 2. School of Computer Science and Engineering,Beihang University,Beijing 100191,China
  • 折叠

Abstract

In the past decade,thanks to the powerfulness of deep-learning techniques,we have witnessed a whole new era of automated code generation.To sort out developments,we have conducted a comprehensive review of solutions to deep learning-based code generation.In this survey,we generally formalize the pipeline and procedure of code generation and categorize existing solutions according to taxonomy from perspectives of architecture,model-agnostic enhancing strategy,metrics,and tasks.In addition,we outline the challenges faced by current dominant large models and list several plausible directions for future research.We hope that this survey may provide handy guidance to understanding,utilizing,and developing deep learning-based code-generation techniques for researchers and practitioners.

Key words

code generation/automated software engineering/deep learning/large model/artificial intelli-gence

引用本文复制引用

基金项目

National Natural Science Foundation of China(62192733)

National Natural Science Foundation of China(62192731)

National Natural Science Foundation of China(61751210)

National Natural Science Foundation of China(62072007)

National Natural Science Foundation of China(61832009)

National Natural Science Foundation of China(62192730)

National Natural Science Foundation of China(62302021)

出版年

2024
中国科学:信息科学(英文版)
中国科学院

中国科学:信息科学(英文版)

CSTPCDEI
影响因子:0.715
ISSN:1674-733X
段落导航相关论文