Abstract
Herein,we propose an experimentally feasible scheme to show the quantum phase transition of the Jaynes-Cummings(JC)model by modulating the transition frequency of a two-level system in a quantum Rabi model with strong coupling.By tuning the mod-ulation frequency and amplitude,the ratio of the effective coupling strength of the rotating terms to the effective cavity(atomic transition)frequency can enter the deep-strong coupling regime,while the counter-rotating terms can be neglected.Thus,a deep-strong JC model is obtained.The ratio of the coupling strength to resonance frequencies in the deep-strong JC model is two orders of magnitude larger than the corresponding ratio in the original quantum Rabi model.Our scheme can be employed in atom-cavity resonance and off-resonance cases,and it is valid over a broad range.The nonzero average cavity photons of the ground state indicate the emergence of a quantum phase transition.Further,we demonstrate the dependence of the phase diagram on the atom-cavity detuning and modulation parameters.All the parameters used in our scheme are within the reach of current experimental technology.Our scheme provides a new mechanism for investigating the critical phenomena of finite-sized systems without requiring classical field limits,thereby opening a door for studying fundamental quantum phenomena occurring in the ultrastrong and even deep-strong coupling regimes.
基金项目
National Natural Science Foundation of China(12075083)