首页|Imprints of ultralight axions on the gravitational wave and pulsar timing measurement
Imprints of ultralight axions on the gravitational wave and pulsar timing measurement
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
万方数据
维普
The axion or axion-like particle motivated from a natural solution of strong CP problem or string theory is a promising dark matter candidate.We study the new observational effects of ultralight axion-like particles by the space-borne gravitational wave detector and the radio telescope.Taking the neutron star-black hole binary as an example,we demonstrate that the gravitational waveform could be obviously modified by the slow depletion of the axion cloud around the black hole formed through the superradiance process.We compare these new effects on the binary with the well-studied effects from dynamical friction with dark matter and dipole radiation in model-independent ways.Finally,we discuss the constraints from LIGO/Virgo and study the detectability of the ultralight axion particles at LISA and TianQin.
gravitational waveaxiondark matter
Ning Xie、Fa Peng Huang
展开 >
MOE Key Laboratory of TianQin Mission,TianQin Research Center for Gravitational Physics & School of Physics and Astronomy,Frontiers Science Center for TianQin,Gravitational Wave Research Center of CNSA,Sun Yat-sen University(Zhuhai Campus),Zhuhai 519082,China
National Natural Science Foundation of ChinaGuangdong Major Project of Basic and Applied Basic Research