首页|Investigation of coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles

Investigation of coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles

扫码查看
This study investigates numerically the coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles.Five scenarios are considered,each with varying initial separations S/L(where L demotes the side length of the square)ranging from 0.125 to 1.0.Squares are filled with SF6 gas,and are enclosed by N2 gas.The simulations of shock-induced multi-species flow are performed by solving the two-dimensional compressible Euler equations with a higher-order explicit modal discontinuous Galerkin solver.The simulations demonstrate that the flow morphology resulting from the coupling effect is highly dependent on the separation between two squares.When the separation is large,the squares experience a weaker coupling effect and evolve independently.While,as the separation reduces,the coupling effect manifests earlier in the interaction and becomes more substantial.As a result,this phenomenon greatly intensifies the motion of inner upstream/downstream vortex rings towards the symmetry axis,leading to the emergence of multiple jets such as the twisted downward,upward,and coupled jets.A thorough exploration of the coupling effect of double squares is conducted by analyzing the vorticity production.Notably,a significant quantity of vorticity is produced along the squares interface for smaller separation.Further,these coupling effects result in vari-ous interface features(upstream/downstream movement,and height/width evolution),and temporal variations of various spatially integrated fields.Finally,the analysis of the flow structure also considers the interaction between two more flow parameters,the Mach and Atwood numbers,in order to evaluate the coupling effects.

RM instabilityshock wavedouble square bubblescoupling effect

Satyvir Singh、Dhouha Taib Jalleli

展开 >

Applied and Computational Mathematics,RWTH Aachen University,Aachen 52056,Germany

Department of Mathematics,Graphic Era Deemed to be University,Dehradun 244712,India

Mathematics Department,University College in Darb,Jazan University,Abu As Sadad 89653,Saudi Arabia

German Research Foundation within the research unit

DFG-FOR5409

2024

中国科学:物理学 力学 天文学(英文版)
中国科学院

中国科学:物理学 力学 天文学(英文版)

CSTPCD
影响因子:0.91
ISSN:1674-7348
年,卷(期):2024.67(1)
  • 62