中国科学:物理学 力学 天文学(英文版)2024,Vol.67Issue(5) :1-10.DOI:10.1007/s11433-023-2337-2

A quantum federated learning framework for classical clients

Yanqi Song Yusen Wu Shengyao Wu Dandan Li Qiaoyan Wen Sujuan Qin Fei Gao
中国科学:物理学 力学 天文学(英文版)2024,Vol.67Issue(5) :1-10.DOI:10.1007/s11433-023-2337-2

A quantum federated learning framework for classical clients

Yanqi Song 1Yusen Wu 2Shengyao Wu 1Dandan Li 3Qiaoyan Wen 1Sujuan Qin 1Fei Gao1
扫码查看

作者信息

  • 1. State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
  • 2. Department of Physics,The University of Westem Australia,Perth,W4 6009,Australia
  • 3. School of Computer Science(National Pilot Software Engineering School),Beijing University of Posts and Telecommunications,Beijing 100876,China
  • 折叠

Abstract

Quantum federated learning(QFL)enables collaborative training of a quantum machine learning(QML)model among multiple clients possessing quantum computing capabilities,without the need to share their respective local data.However,the limited availability of quantum computing resources poses a challenge for each client to acquire quantum computing capabilities.This raises a natural question:Can quantum computing capabilities be deployed on the server instead?In this paper,we propose a QFL framework specifically designed for classical clients,referred to as CC-QFL,in response to this question.In each iteration,the collaborative training of the QML model is assisted by the shadow tomography technique,eliminating the need for quantum computing capabilities of clients.Specifically,the server constructs a classical representation of the QML model and transmits it to the clients.The clients encode their local data onto observables and use this classical representation to calculate local gra-dients.These local gradients are then utilized to update the parameters of the QML model.We evaluate the effectiveness of our framework through extensive numerical simulations using handwritten digit images from the MNIST dataset.Our framework provides valuable insights into QFL,particularly in scenarios where quantum computing resources are scarce.

Key words

quantum federated learning/classical clients/shadow tomography technique

引用本文复制引用

基金项目

National Natural Science Foundation of China(62371069)

National Natural Science Foundation of China(62272056)

National Natural Science Foundation of China(62372048)

Beijing Natural Science Foundation(4222031)

China Scholarship Council(202006470011)

出版年

2024
中国科学:物理学 力学 天文学(英文版)
中国科学院

中国科学:物理学 力学 天文学(英文版)

CSTPCD
影响因子:0.91
ISSN:1674-7348
段落导航相关论文