中国科学:物理学 力学 天文学(英文版)2024,Vol.67Issue(6) :79-85.DOI:10.1007/s11433-024-2341-2

Energy-information trade-off induces continuous and discontinuous phase transitions in lateral predictive coding

Zhen-Ye Huang Ruyi Zhou Miao Huang Hai-Jun Zhou
中国科学:物理学 力学 天文学(英文版)2024,Vol.67Issue(6) :79-85.DOI:10.1007/s11433-024-2341-2

Energy-information trade-off induces continuous and discontinuous phase transitions in lateral predictive coding

Zhen-Ye Huang 1Ruyi Zhou 2Miao Huang 1Hai-Jun Zhou3
扫码查看

作者信息

  • 1. Key Laboratory for Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
  • 2. School of Optics and Photonics,Beijing Institute of Technology,Beijing 100081,China
  • 3. Key Laboratory for Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Minjiang Collaborative Center for Theoretical Physics,Minjiang University,Fuzhou 350108,China
  • 折叠

Abstract

Lateral predictive coding is a recurrent neural network that.creates energy-efficient internal representations by exploiting statis-tical regularity in sensory inputs.Here,we analytically investigate the trade-off between information robustness and energy in a linear model of lateral predictive coding and numerically minimize a free energy quantity.We observed several phase transi-tions in the synaptic weight matrix,particularly a continuous transition that breaks reciprocity and permutation symmetry and builds cyclic dominance and a discontinuous transition with the associated sudden emergence of tight balance between excitatory and inhibitory interactions.The optimal network follows an ideal gas law over an extended temperature range and saturates the efficiency upper bound of energy use.These results provide theoretical insights into the emergence and evolution of complex internal models in predictive processing systems.

Key words

predictive coding/recurrent neural network/phase transition/internal model/free energy

引用本文复制引用

基金项目

National Natural Science Foundation of China(12047503)

National Natural Science Foundation of China(11747601)

National Natural Science Foundation of China(12247104)

National Innovation Institute of Defense Technology(22TQ0904ZT01025)

出版年

2024
中国科学:物理学 力学 天文学(英文版)
中国科学院

中国科学:物理学 力学 天文学(英文版)

CSTPCD
影响因子:0.91
ISSN:1674-7348
段落导航相关论文