首页|2000-2020年海南岛天然橡胶人工林分布变化数据集

2000-2020年海南岛天然橡胶人工林分布变化数据集

扫码查看
天然橡胶人工林是海南岛最主要的森林生态系统之一,是我国热区生态系统服务价值的新兴增长点.准确监测和绘制海南岛橡胶林空间分布情况和动态变化趋势,对区域生态环境与经济发展至关重要.利用从Google Earth Engine(GEE)云平台获取的1998-2022年海南岛Landsat TM/OLI影像数据,结合第三次全国国土调查报告数据与野外调查数据,采用随机森林分类模型,获得了 2000-2020年5期海南岛天然橡胶人工林分布变化数据集.数据集总体精度为96.93%,生产者精度为89.10%,用户精度为94.72%,具有较高准确性;海南岛橡胶林面积增长趋势明显,由2000年3661.65km2增长至2020年7422.02km2.本数据集可以为橡胶林生态系统监测、管理与决策等方面提供数据支持.
A dataset of distribution changes of natural rubber plantations in Hainan Island from 2000 to 2020
Natural rubber plantations are one of the primary forest ecosystems on Hainan Island and serve as a burgeoning focal point for ecosystem services in the Tropics.Therefore,it is crucial for regional ecological environment and economic development to accurately monitor and map the spatial and temporal pattern of rubber plantations.Employing Landsat TM/OLI image data acquired through the Google Earth Engine(GEE)cloud platform spanning from 1998 to 2022 in Hainan Island,coupled with information from the Third National Land Survey Report,we obtained a dataset of distribution changes of natural rubber plantations in Hainan Island from 2000 to 2020,by using a random forest classification model.The dataset demonstrates a relatively high accuracy,with an overall accuracy of 96.93%;Specifics include a producer's accuracy of 89.10%and a user's accuracy of 94.72%.The rubber plantation area in Hainan Island has exhibited a growing trend,increasing from 3,661.65 km2 in 2000 to 7,422.02 km2 in 2020.This dataset can provide fundamental support for monitoring,managing,and decision-making concerning rubber plantation ecosystems.

rubber plantationLandsat imageryrandom forest classification modelGoogle Earth Engine cloud platformHainan Island

包青格乐、张润卿、王艺宸、崔嵬、赵俊福、乌兰、孙仲益

展开 >

海南大学生态与环境学院,海口 570228

国家林业和草原局发展研究中心,北京 100714

海南省生态环境监测中心,海口 571126

海南省农林环境过程与生态调控重点实验室,海口 570228

展开 >

橡胶林 Landsat影像 随机森林分类模型 Google Earth Engine云平台 海南岛

国家自然科学基金青年基金国家重点研发计划项目国家自然科学基金地区基金

421011012021YFD220040432160320

2023

中国科学数据(中英文网络版)

中国科学数据(中英文网络版)

CSTPCDCSCD
ISSN:2096-2223
年,卷(期):2023.8(4)
  • 6