首页|2015-2022年漓江流域12天时间分辨率地表水体面积数据集

2015-2022年漓江流域12天时间分辨率地表水体面积数据集

扫码查看
喀斯特地貌在广西地区分布广泛,具有汛期降水强度大、水文过程迅速且时空异质性高等特点。水是重要的生态基础和自然资源,及时、准确地获取地表水体的时空变化特征,对于水资源的保护与管理、旱涝灾害的快速评估以及实现各个经济产业的可持续发展等具有现实意义。本数据集以广西桂林漓江流域为研究区域,针对当前地表水体监测频次低、水体提取方法受限于样本信息以及在复杂地形区域内提取精度较低等问题,结合Sentinel-1雷达和Sentinel-2光学等多源遥感数据,基于雷达和光学传感器成像原理的不同,提出了一种基于经验阈值进行矢量分类的方法,剔除了绝大部分地物阴影的干扰,构建了 2015-2022年漓江流域时间分辨率为12天、空间分辨率为10米的地表水体面积数据集,共包括196期地表水体矢量数据。通过对数据集的空间分布和定量精度验证,结果表明:本数据集对河流、湖泊和水库的入、出水口以及复杂地形区域内小型水体等的提取精度较高,总体精度达到92。73%,Kappa系数为0。85。本数据集可用于支撑漓江流域水资源保护和生态环境的可持续管理,能够为应急管理、灾害防治、水利开发和经济发展等领域的决策提供可靠数据。
A dataset of surface water area with 12-day resolution in Lijiang River Basin from 2015 to 2022
Widely distributed in Guangxi,Karst landforms are characterized by heavy rainfall during the flood season,rapid hydrological dynamics,and notable spatiotemporal variations.A water is an important ecological foundation and natural resource,the timely and accurate acquisition of spatiotemporal changes in surface water bodies holds practical significance for the protection and management of water resources,rapid assessment of drought and flood disasters,and the realization of sustainable development across various economic industries.This dataset takes the Lijiang River Basin in Guilin,Guangxi as the research area.Addressing prevalent challenges such as infrequenct surface water monitoring,limited water body extraction methods due to sparse sample information,and low extraction accuracy in complex terrain areas,we combined the data from Sentinel-1 radar and Sentinel-2 in the study.Considering the different imaging principles of radar and optical sensors,we developed a vector classification method based on empirical thresholds for optical and other multi-source remote sensing data.The method can effectively eliminate interference of most ground object shadows,allowing for the construction of dataset of surface water area with 12-day resolution in Lijiang River Basin from 2015 to 2022.The dataset comprises a total of 196 periods of surface water body vector data.According to the results after verifying the spatial distribution and quantitative accuracy of the dataset,the dataset demonstrates its capability to accurately extract inlets and outlets of rivers,lakes and reservoirs,as well as small water bodies in complex terrain areas.The overall accuracy reaches 92.73%,with a Kappa coefficient of 0.85.This dataset can be used to support water resources protection and sustainable management of the ecological environment in the Lijiang River Basin.Additionally,it can provide reliable data for decision-making in areas such as emergency management,disaster prevention,water conservancy development,and economic development.

Surface water areaSentinel-1/2vector classificationLijiang River Basin

梁怡邦、邱玉宝、贾国强、赵宁、钟万洋、崔恒

展开 >

桂林电子科技大学,信息与通信学院,广西桂林 541004

中国-东盟地球大数据区域创新中心,南宁 530022

中国科学院空天信息创新研究院,中国科学院数字地球重点实验室,北京 100094

可持续发展大数据国际研究中心,北京 100094

展开 >

地表水体面积 Sentinel-1/2 矢量分类 漓江流域

2024

中国科学数据(中英文网络版)

中国科学数据(中英文网络版)

CSTPCD
ISSN:2096-2223
年,卷(期):2024.9(2)