首页|基于多变量监测时序的冲击地压复杂性分析

基于多变量监测时序的冲击地压复杂性分析

扫码查看
论文基于多变量时间序列相空间重构来计算数据的关联维数,以研究冲击地压监测数据的复杂程度。考虑到冲击地压监测数据含有噪声而且长度有限,对传统 G-P 算法进行了扩展改进,给出了改进算法求解多变量时间序列的关联维数的原理,并用于 Lorenz 混沌系统检验了改进算法的有效性。收集了不同冲击情况下多种监测类型的冲击地压时间序列数据,用改进 G-P 算法求解这些监测数据的关联维数值。研究结果表明:冲击地压监测数据具有混沌特性,而且数据关联维数越大,复杂程度越高,对应矿井的冲击破坏性越强。这为基于混沌理论预测冲击危险性提供了新方法和依据。
Rock burst complexity analysis based on multivariate monitoring time series
This paper studies the complexity of the data to monitor Rock burst through computing correlation dimension based on phase-space reconstruction of multivariate time series.Given that Rock burst monitoring data had limited-length and contained noise,traditional G-P algorithm is extended and improved. The principle of improved G-P algorithm of solving correlation dimension of multivariate time series was provided,and algorithm was verified through employing it to Lorenz chaotic system.Then a mass of time-series data to monitor Rock burst were collected by diverse equipment under different burst degree,and their correlation dimensions were computed through improved G-P algorithm.The results demonstrate that the data have chaotic characteristic,and the larger correlation dimension is,the more complex monitoring data is,the stronger Rock-burst damage of corresponding coal mine is.Our achievement can give a novelty approach and basis to predict Rock burst risk based on chaos method.

rock burstmultivariate time-seriescorrelation dimensionchaotic characteristic

陶慧、李莹、马小平

展开 >

河南理工大学电气工程与自动化学院,河南 焦作 454000

中国矿业大学信息与电气工程学院,江苏 徐州 221116

焦作大学计算机学院,河南 焦作 454000

冲击地压 多变量时间序列 关联维数 混沌特性

国家自然科学基金

60974126

2015

中国矿业
中国矿业联合会

中国矿业

CSTPCD北大核心
影响因子:0.875
ISSN:1004-4051
年,卷(期):2015.(10)
  • 2
  • 7