首页|基于随机森林算法的薄煤层工作面开采效能预测研究

基于随机森林算法的薄煤层工作面开采效能预测研究

扫码查看
薄煤层开采环境恶劣,开采效能受井下多种因素影响.为研究各因素对开采效能的影响程度,预测薄煤层开采效能,首先,从 130个已开采薄煤层工作面中提取了煤层厚度、工作面长度、煤层平均倾角、煤层硬度、煤层断层、煤层顶底板、煤层水文、煤层夹矸、瓦斯矿井类型、煤层自燃性、煤层稳定性、煤层层状起伏、采煤工艺、工作面月产量和工作面主要装备等15种开采效能影响因素,将其详细划分为 20个影响因子;其次,筛选了 37个数据较完整的工作面样本,并基于随机森林算法、网格搜索法和 3折交叉验证法训练了薄煤层工作面开采效能最优预测模型,其测试集准确率约 95.2%,R2 为 0.924;同时,最优模型绘制了开采效能影响权重图,月产量、采煤机装备、工作面长度和煤层厚度对开采效能影响较大,其他参数影响较小;最后,以双阳煤矿某薄煤层工作面为例,对其开采效能进行预测,并从工作面产量、工人工效和装备利用率三方面对预测值进行理论校验,校验结果在随机森林模型的预测范围内,验证了随机森林开采效能预测模型的可靠性,为薄煤层工作面开采设计提供了一种参考.
Research on the prediction of mining efficiency of thin coal seam working face based on the Random Forest Algorithm
Thin coal seam mining is harsh,whose mining efficiency is affected by a variety of factors in the underground.In order to study the influence of each factor on the mining efficiency and predict the mining efficiency of thin coal seam,fifteen factors,coal seam thickness,coal seam average dip angle,coal seam hardness,coal seam fault,coal seam top and bottom plate,coal seam hydrology,coal seam gangue,gas mine type,coal seam spontaneous combustion,coal seam stability,coal seam undulation,coal mining technology,monthly production,working face length and working face equipment,are extracted from 130 mined thin coal seam working faces.Then,37 workface samples with complete data are screened,and the optimal prediction model for mining efficiency of thin coal seam working face is trained based on Random Forest Algorithm,Grid Search Method and 3-Fold Cross-Validation Method,with an accuracy rate of about 95.2%and R2 of 0.924 in the test set.Meanwhile,the optimal model draws a weighting diagram of mining efficiency,where monthly production,coal mining equipment,working face length and coal seam thickness have a greater influence on mining efficiency,while other parameters have a smaller influence.Finally,taking a thin coal seam working face in Shuangyang Coal Mine as an example,the mining efficiency is predicted,and the predicted values are theoretically verified in terms of working face production,workers'work efficiency and equipment utilization rate.The results are within the prediction range of the Random Forest Model,which verifies the reliability of the Random Forest mining efficiency prediction model and provides a reference for the mining design of thin coal seam working face.

thin coal seammining efficiencyRandom Forest Algorithmintelligent mining

李伟、刘化广、朱海丽

展开 >

黑龙江科技大学矿业工程学院,黑龙江哈尔滨 150022

黑龙江科技大学黑龙江省煤矿深部开采地压控制与瓦斯治理重点实验室,黑龙江哈尔滨 150022

薄煤层 开采效能 随机森林算法 智能开采

特殊地质条件智能开采关键性问题攻关项目

2022-KYYWF-0524

2024

中国矿业
中国矿业联合会

中国矿业

CSTPCD北大核心
影响因子:0.875
ISSN:1004-4051
年,卷(期):2024.33(5)
  • 50