首页|大学生进食障碍亚临床状态的网络分析

大学生进食障碍亚临床状态的网络分析

扫码查看
目的:使用两种网络分析方法,探索大学生进食障碍亚临床状态(sub-clinical eating disorders,简称SCED)下,进食障碍症状间的关系.方法:采用进食障碍检查自评问卷,筛选出247名处于进食障碍亚临床状态的大学生进行分析,分别基于高斯图形模型和贝叶斯爬山算法构建了进食障碍亚临床状态的正则化偏相关网络和有向网络.结果:在正则化偏相关网络中,思考进食而无法集中注意力是进食障碍亚临床状态症状网络中影响力最高的症状,其次是对体重不满;在有向网络中,思考进食而无法集中注意力是网络中优先级最高的节点.结论:临床工作者在诊疗筛查过程中,需关注与进食相关的认知症状,以尽早识别进食障碍亚临床状态个体.
A Network Analysis of Sub-clinical Eating Disorders in College Students
Objective:To investigate the network of eating disorder symptoms in college students with sub-clinical eat-ing disorders based on network approach.Methods:A total of 247 college students with sub-clinical eating disorders were included in analysis after reporting Eating Disorder Examination Questionnaire.Gaussian graphical models and Bayesian hill climbing algorithms were used to construct symptom networks of sub-clinical eating disorders.Results:LASSO net-work showed that difficulty concentrating due to thoughts of eating was the most central symptom,followed by dissatisfac-tion with weight.Bayesian network showed that difficulty concentrating due to thoughts of eating was the highest priority node.Conclusion:Psychiatrists should pay attention to the cognitive symptoms associated with eating in the early screen-ing for individuals with SCED.

College studentsSub-clinical eating disordersNetwork analysis

连雅囡、张迪、刘思含、伍新春

展开 >

北京师范大学心理学部,应用实验心理北京市重点实验室,心理学国家级实验教学示范中心(北京师范大学),北京 100875

山东省精神卫生中心,济南 250014

中国海洋大学心理健康教育与咨询中心,青岛 266100

北京师范大学应用心理学院(珠海校区),珠海 519087

展开 >

大学生 进食障碍亚临床状态 网络分析

国家自然科学基金

32071085

2024

中国临床心理学杂志
中国心理卫生协会

中国临床心理学杂志

CSTPCDCSSCI北大核心
影响因子:1.474
ISSN:1005-3611
年,卷(期):2024.32(1)
  • 40