首页|基于肿瘤增殖和免疫相关生物标志物的卵巢癌患者预后预测的临床研究

基于肿瘤增殖和免疫相关生物标志物的卵巢癌患者预后预测的临床研究

扫码查看
目的 联合肿瘤增殖和免疫相关生物标志物,构建预测卵巢癌患者预后的列线图模型。方法 收集2009-2013年诊断为上皮性卵巢癌(EOC)患者的临床信息。用免疫组化染色检测肿瘤组织KI67、表皮生长因子受体(EGFR)、程序性死亡配体-1(PD-L1)的表达水平。用Lasso-Cox回归筛选变量构建列线图模型。时间依赖性受试者工作特征(ROC)曲线、一致性指数、校准曲线和决策曲线分析(DCA)分析分别用于评估模型判别、校准和临床净获益能力。Kap-lan-Meier生存分析评估模型风险评分预后价值。结果 共纳入131例EOC患者,按6∶4随机分配到训练集(n=79)和验证集(n=52)。Lasso-Cox回归共确定7个变量用于构建列线图预测模型。训练集中模型1、4和6年总生存期的AUC分别为0。911、0。943和0。968,一致性指数为0。86[95%置信区间(CI)为0。81~0。91],验证集中模型1、4和6年总生存期的AUC分别为0。830、0。797和0。828,一致性指数为0。71(95%CI为0。64~0。78)。在训练集和验证集中校准曲线显示,模型预测生存率与实际结果 之间一致性良好(均P>0。05)。DCA分析显示,模型临床净获益均优于TNM分期。模型高风险评分患者的总生存期(P<0。01)和无进展生存期(P<0。01)更差。结论 基于肿瘤增殖和免疫相关生物标志物,成功开发并验证了卵巢癌预后列线图预测模型,为临床提供了一个高效、简便的辅助工具,有助于实现卵巢癌患者的个体化治疗。
Clinical trial on prognosis prediction of ovarian cancer patients based on tumor proliferation and immune-related biomarkers
Objective To integrate tumor proliferation and immune-related biomarkers to construct a nomogram prediction model for predicting the prognosis of ovarian cancer patients.Methods We collected clinical information from patients diagnosed with epithelial ovarian cancer(EOC)between 2009 and 2013.Immunohistochemical staining was performed to detect the expression levels of KI67,epidermal growth factor receptor(EGFR)and programmed death-ligand 1(PD-Ll)in tumor tissues.We employed Lasso-Cox regression to identify variables and construct the nomogram model.We used time-dependent receiver operating characteristic(ROC)curves,concordance index,calibration curves,and decision curve analysis(DC A)curves to assess the model's discrimination,calibration,and net clinical benefit ability,respectively.Additionally,we conducted Kaplan-Meier survival analysis to assess the prognostic value of the model's risk score.Results We included a total of 131 EOC patients who were randomly assigned to the training set(n=79)and validation set(n=52)in a 6∶4 ratio.Lasso-Cox regression identified seven variables for constructing the nomogram prediction model.The AUCs for 1-,4-,and 6-year overall survival in the training set were 0.911,0.943,and 0.968,respectively,with a consistency index of 0.86[95%confidence interval(CI):0.81-0.91].In the validation set,the AUCs for 1-,4-,and 6-year overall survival were 0.830,0.797,and 0.828,respectively,with a consistency index of 0.71(95%CI:0.64-0.78).The calibration curves in both training and validation sets demonstrated strong agreement between model-predicted survival and actual outcomes(all P>0.05).DCA curves indicated that the modeled net clinical benefit outperformed TNM staging.Patients with high-risk scores in the model exhibit poorer overall survival(P<0.01)and progression-free survival(P<0.01).Conclusion The successful development and validation of a nomogram prediction model based on tumor proliferation and immune-related biomarkers offer an efficient and straightforward clinical tool.This tool holds promise for enabling personalized treatment strategies for patients with ovarian cancer.

proliferationimmunityovarian cancernomogramprognosis

刘易陇、何霞、宋学武、童荣生

展开 >

电子科技大学医学院,四川成都 610054

乐山市人民医院药学部,四川乐山 614000

四川省医学科学院·四川省人民医院/电子科技大学附属医院药学部个体化药物治疗四川省重点实验室,四川成都 610072

增殖 免疫 卵巢癌 列线图 预后

国家重点研发计划国家自然科学基金面上项目四川省科技厅重点研发计划四川省医院协会青年药师科研专项个体化药物治疗四川省重点实验室开放基金四川省医科院·四川省人民医院科研项目

2020YFC2005500721740382022YFS0272220082021ZD022020LY06

2024

中国临床药理学杂志
中国药学会

中国临床药理学杂志

CSTPCD北大核心
影响因子:1.91
ISSN:1001-6821
年,卷(期):2024.40(2)
  • 15