Effects of vitexin on rats with chronic obstructive pulmonary disease
Objective To study the effect of vitexin inhibiting Ras homology C(RhoC)/Rho-associated kinase(ROCK)signaling on lung inflammation and airway remodeling in rats with chronic obstructive pulmonary disease.Methods SD rats were divided into control group,model group(chronic obstructive pulmonary disease model),experimental-L group(chronic obstructive pulmonary disease model,1.5 mg·kg-1 vitexin treatment),experimental-M group(chronic obstructive pulmonary disease model,3.0 mg·kg-1 vitexin treatment),experimental-H group(chronic obstructive pulmonary disease model,6.0 mg·kg-1 vitexin treatment),experimental-H+LPA group(chronic obstructive pulmonary disease mode,6.0 mg·kg-1 vitexin,lysophosphatidic acid 1 mg treatment),Western blot detection of RhoC protein expression,detection of pulmonary function indexes in rats,hematoxylin-eosin staining to observe lung histopathology,and evaluation of airway inflammation in rats score,airway smooth muscle thickness,enzyme-linked immunosorbent assay method to detect interleukin-6(IL-6)content in bronchoalveolar lavage fluid,immunohistochemistry to detect basic fibroblast growth factor(bFGF)in lung tissue.Results The expression levels of RhoC protein in the control group,model group,experimental-H group,and experimental-H+LPA group were 0.25±0.02,0.71±0.09,0.31±0.03,0.47±0.04;forced vital capacity(FVC)were(8.25±0.62),(4.12±0.24),(7.21±0.54),(6.44±0.52)mL;inflammation score were 0.52±0.04,2.54±0.15,1.23±0.11,1.79±0.32;smooth muscle thickness were(19.28±1.52),(28.43±1.74),(19.45±1.18),(25.85±1.57)μm;IL-6 content were(2.40±0.08),(5.67±0.44),(2.85±0.23),(4.01±0.29)ng·L-1;bFGF protein expression were 0.19±0.02,0.52±0.05,0.24±0.02,0.43±0.05.There were statistically significant differences in the above indicators between the model group and the control group,between the experimental-H group and the model group,and between the experimental-H+LPA group and the experimental-H group(all P<0.05).Conclusion Vitexin inhibits RhoC/Rock signaling to improve lung inflammation and airway remodeling in chronic obstructive pulmonary disease rats.