中国粮油学报2024,Vol.39Issue(1) :189-195.DOI:10.20048/j.cnki.issn.1003-0174.000226

基于注意力机制的轻量化VGG玉米籽粒图像识别模型

Image Recognition Model of Light VGG Maize Kernel Based on Attention Mechanism

孙孟研 王佳 马睿 代东南 刘起 穆春华 马德新
中国粮油学报2024,Vol.39Issue(1) :189-195.DOI:10.20048/j.cnki.issn.1003-0174.000226

基于注意力机制的轻量化VGG玉米籽粒图像识别模型

Image Recognition Model of Light VGG Maize Kernel Based on Attention Mechanism

孙孟研 1王佳 1马睿 1代东南 1刘起 1穆春华 2马德新1
扫码查看

作者信息

  • 1. 青岛农业大学,青岛 266109
  • 2. 山东省农业科学院玉米研究所,济南 250100
  • 折叠

摘要

玉米是重要的生产资料,为实现对玉米种子的识别与保护,实验采集了 5个玉米品种,经处理后共获得1 778张玉米籽粒图像,建立胚面与胚乳面混合的数据集.按7∶2∶1的比例划分训练集、验证集和测试集.首先基于迁移学习选取DenseNet121、MobileNetV2、VGG16和GoogLeNet对玉米籽粒图像进行识别,在测试集上的准确率分别是94.32%、93.18%、95.45%和92.61%,由于在VGG16上的准确率最高,所以选择对VGG16进行改进,在对模型进行轻量化处理的同时引入通道注意力SE模块,构建一个新的网络模型L-SE-VGG,并与未预训练的VGG16、迁移学习的VGG16和不加SE模块的L-VGG进行对比,最终在L-SE-VGG上的识别准确率高达98.86%.研究为深度学习技术在玉米籽粒品种识别中的应用提供了新的有效策略和实验方法,为玉米籽粒品种的识别和检测提供了参考.

Abstract

Corn is an important means of production.In order to recognize and protect corn seeds,5 corn varie-ties were collected in this experiment.After processing,a total of 1 778 corn grain images were obtained,and a mixed dataset of embryo surface and endosperm surface was established.The training set,verification set,and test set were divided in a ratio of 7:2:1.Firstly,based on transfer learning,DenseNet121,MobileNetV2,VGG16 and GoogLeNet were selected to recognize the corn kernel image,and the accuracy rates in the test set were 94.32%,93.18%,95.45%and 92.61%,respectively.Since VGG16 had the highest accuracy,Therefore,VGG16 was im-proved,and channel attention SE module was introduced to construct a new network model L-SE-VGG while sim-plifying the model structure.Compared with VGG16 without pre-training,VGG16 with transfer learning and L-VGG without SE module,the recognition accuracy of L-SE-VGG was up to 98.86%.The study provides a new and effective strategy and experimental method for the application of deep learning technology in the identification of corn varieties and provides reference for the identification and detection of corn varieties.

关键词

VGG16/SE模块/图像识别/深度学习/玉米籽粒

Key words

VGG16/SE block/image recognition/deep learning/corn kernel

引用本文复制引用

基金项目

山东省自然科学基金项目(ZR2022MC152)

山东省高等学校青创人才引育计划项目(202202027)

出版年

2024
中国粮油学报
中国粮油学会

中国粮油学报

CSTPCD北大核心
影响因子:1.056
ISSN:1003-0174
参考文献量21
段落导航相关论文