首页|基于改进CBAM注意力机制的MobileNetV2玉米种子品种识别研究

基于改进CBAM注意力机制的MobileNetV2玉米种子品种识别研究

扫码查看
玉米是我国主要粮食作物,有较高的营养价值和经济价值。不同的地域环境适宜种植的玉米品种不同,但由于玉米种子在外形方面存在的差异较小,所以仅凭肉眼很难对其进行快速准确的识别。为实现玉米种子品种的准确识别,研究采集了 9种玉米种子图像共2792张建立数据集,并按照7∶2∶1的比例随机划分训练集、验证集和测试集。将注意力机制CBAM引入轻量化模型MobileNetV2,对CBAM的串行方式进行改进,构建一个新型注意力模块E_CBAM,并通过对比不同的压缩比,选出效果最佳的压缩比为4,提出了 E_CBAM_MobileNetV2模型。实验表明E_CBAM_MobileNetV2的准确率为98。18%,相较于MobileNetV2提高了 5。45%。
Mobile NetV2 Maize Seed Variety Recognition Based on Improved Attention Mechanism CBAM
Maize is a main food crop in China,with high nutritional value and economic value.Different geo-graphical environments are applicable for different varieties of maize for planting,however,due to the slight differ-ences in appearance of different varieties,it is difficult to quickly and accurately identify different varieties with the naked eye.In order to realize the accurate identification of maize seed varieties,total 2 792 images of 9 kinds of maize seeds were collected in this study to establish a data set,and training set,verification set and test set were ran-domly divided according to a ratio of 7∶2∶1.In this study,the attention mechanism CBAM was introduced into the lightweight model MobileNetV2,the serial mode of CBAM was improved,a new attention module E_CBAM was built,and different reduction ratios were compared,the best reduction ratio of4 was selected,and E_CBAM_Mobile-NetV2 model was proposed.Experiments indicated,that the accuracy of E_CBAM_MobileNetV2 was 98.18%,5.45%higher than that of MobileNetV2.

image classificationmaize seedMobileNetV2CBAM

牛思琪、马睿、许晓琳、梁敖、穆春华、许金普、马德新

展开 >

青岛农业大学动漫与传媒学院,青岛 266109

山东省农业科学院玉米研究所,济南 250100

青岛农业大学智慧农业研究院,青岛 266109

图像分类 玉米种子 MobileNetV2 CBAM

山东省自然科学基金山东省高等学校青创人才引育计划中央引导地方科技发展专项

ZR2022MC15220220202723-1-3-6-zyydnsh

2024

中国粮油学报
中国粮油学会

中国粮油学报

CSTPCD北大核心
影响因子:1.056
ISSN:1003-0174
年,卷(期):2024.39(3)
  • 19