首页|基于改进YOLOv5的碎米检测数据集

基于改进YOLOv5的碎米检测数据集

扫码查看
碎米检测是评估大米品质的重要环节,传统的碎米检测是由人工挑选完成的,这种方式耗时费力,误差率高,而且公开可用的碎米检测数据集并不多.为解决该问题,研究创建了 一个大米碎米数据集,该数据集共由2 435张图片和对应标签文件组成,其中包含3种类别;并提出了一个改进的YOLOv5碎米检测模型,该模型引入ShuffleNetv2轻量化结构作为特征提取结构,大大减少了模型的参数量,在此基础上,引入了BiFPN结构作为特征融合结构,使用α_IoU作为回归框损失对损失函数进行改进.实验表明,改进之后的模型精度可达98.9%,比原YOLOv5模型高0.3%,参数量和计算量也比原模型减少了 85%以上,其中精度相比于 YOLOv3、SSD、RestinaNet、FasterRCNN 分别高了 0.4%、33.3%、27.9%、27.2%.相关数据集在 https://github.com/THFrag/broken-rice-detection 上提供.
Broken Rice Detection Dataset Based on Improved YOLOv5
Broken rice detection is an important part of evaluating the quality of rice.Traditional broken rice de-tection is manually selected,time-consuming and laborious with high error rate.To solve this problem,in this pa-per,a broken rice dataset was created.The dataset consisted of 2 435 images and corresponding label files,contai-ning three categories.In this model,the ShuffleNetv2 lightweight structure was introduced as the feature extraction structure,greatly reducing the number of parameters of the model.On the basis,the BiFPN structure was introduced as the feature fusion structure,and α_IoU was used as the regression box loss to improve the loss function.Experi-ments showed that the accuracy of the improved model reached 98.9%,0.3%higher than that of the original YOLOv5,and the number of parameters and calculation were also reduced by over 85%than that of the original mod-el.Compared with YOLOv3,SSD,RestinaNet and FasterRCNN,the improved model was 0.4%,33.3%,27.9%and 27.2%higher in accuracy,respectively.The relevant datasets are available at https://github.com/THFrag/broken-rice-detection.

datasetsdeep learningbroken rice detectionYOLOv5

刘书婷、牟怿、陈为真

展开 >

武汉轻工大学电气与电子工程学院,武汉 430048

数据集 深度学习 碎米检测 YOLOv5

湖北省教育厅科学技术研究项目

B2020061

2024

中国粮油学报
中国粮油学会

中国粮油学报

CSTPCD北大核心
影响因子:1.056
ISSN:1003-0174
年,卷(期):2024.39(4)
  • 26