中国粮油学报2024,Vol.39Issue(7) :181-188.DOI:10.20048/j.cnki.issn.1003-0174.000691

改进目标检测模型在大米外观品质检测中的应用研究

Application Research of Improved Object Detection Models in Rice Appearance Quality Inspection

成泞伸 张聪 魏志慧 闫可 陈新波
中国粮油学报2024,Vol.39Issue(7) :181-188.DOI:10.20048/j.cnki.issn.1003-0174.000691

改进目标检测模型在大米外观品质检测中的应用研究

Application Research of Improved Object Detection Models in Rice Appearance Quality Inspection

成泞伸 1张聪 1魏志慧 2闫可 2陈新波2
扫码查看

作者信息

  • 1. 武汉轻工大学电气与电子工程学院,武汉 430023
  • 2. 武汉轻工大学数学与计算机学院,武汉 430023
  • 折叠

摘要

针对现有的大米外观品质检测方法存在识别准确率较低的问题,本研究提出一种结合高效通道注意力机制(Efficient Channel Attention,ECA)的改进CenterNet模型(SEP-CenterNet)用于大米外观品质检测.首先,使用图像采集设备获取碎米、整米和黄米图像,为防止由于数据集较小出现过拟合现状,对图像进行旋转、翻转等方式扩充数据集;然后将引入空间金字塔池化(Spatial Pyramid Pooling,SPP)的GhostNet作为CenterNet的骨干网络,用于提取大米的多层次特征,并使用基于ECA注意力机制的路径聚合网络(EPANet)进行语义特征融合.实验结果表明,改进后的CenterNet模型的对碎米、黄米和整米的检测准确率分别达到97.02%、96.73%、98.14%,mAP 值较原始 CenterNet 提升了 5.84%,识别准确率均高于 SSD、Faster-RCNN、Retinanet、YOLOV4、YOLOV4-tiny和YOLOV5等模型,同时对比基于提取形态特征和傅里叶系数的传统大米检测方法,本文模型准确率更高,且具有较好的泛化性.

Abstract

In this research,an improved CenterNet model(SEP-CenterNet)combining Efficient Channel At-tention(ECA)mechanism for rice appearance quality detection was proposed,aiming to solve the problem of low recognition accuracy in existing detection methods.Firstly,images of broken rice,whole rice,and yellow rice were obtained using image acquisition equipment,and data augmentation techniques,such as rotation and flipping,were applied to prevent overfitting due to small datasets.Then,GhostNet with Spatial Pyramid Pooling(SPP)was used as the backbone network of CenterNet to extract multi-level features of rice,and a Path Aggregation Network(EPA-Net)based on ECA attention mechanism was used for semantic feature fusion.Experimental results indicated that the detection accuracy of the improved CenterNet model for broken rice,yellow rice,and whole rice reached 97.02%,96.73%,and 98.14%,respectively,with anmAP improvement of 5.84%compared to the original CenterNet mod-el.The recognition accuracy was higher than that of other models,such as SSD,Faster-RCNN,Retinanet,YOLOV4,YOLOV4-tiny,and YOLOV5.Moreover,compared with the traditional rice detection methods based on extracting morphological features and Fourier coefficients,the proposed model had higher accuracy and better general-ization performance.

关键词

大米外观品质/目标检测/空间金字塔池化/路径聚合网络/注意力机制

Key words

appearance quality of rice/target detection/spatial pyramid pooling/PANet/attention mechanism

引用本文复制引用

基金项目

国家自然科学基金面上基金项目(61272278)

湖北省重大科技专项基金项目(2018ABA099)

"天诚汇智"创新促教基金项目(2018A01038)

出版年

2024
中国粮油学报
中国粮油学会

中国粮油学报

CSTPCD北大核心
影响因子:1.056
ISSN:1003-0174
段落导航相关论文