首页|基于改进的RetinaNet大豆外观品质无损检测

基于改进的RetinaNet大豆外观品质无损检测

扫码查看
快速、准确、有效地区分大豆外观品质是大豆食品质量检验和食品安全与包装中的一项重要而艰巨的任务.本研究提出了基于改进的卷积神经网络Retina Net的大豆外观品质检测模型.将原始主干网络ResNet50替换为ResNet34,在保证准确度的同时降低了模型参数量,提高了运算速度,降低了运算时间.在主干网络和特征金字塔(FPN)的输出端分别嵌入ECA模块,进一步提取有利特征,减轻了冗余特征对网络的影响,提高了网络性能.同时,为保证不失原有特征的丰富性,将FPN后嵌入的ECA模块的输出与主干网络的输出结果相叠加,所得特征作为输入,传入分类器中进行识别检测.结果表明,本研究提出的改进的RetinaNet大豆品质检测模型的精确率达97.39%,mAP值达98.64%.
Non-destructive Detection of Soybean Appearance Quality Based on Improved RetinaNet
Quickly,accurately,and effectively distinguishing the appearance quality of soybeans is an important and arduous task in soybean food quality inspection,food safety,and packaging.In this article,a soybean appear-ance quality detection model based on an improved convolutional neural network RetinaNet was proposed.Replacing the original backbone network ResNet50 with ResNet34 reduced the number of model parameters,improved computa-tional speed,and reduced computational time while ensuring accuracy.Embedding ECA modules at the output ends of the backbone network and feature pyramid(FPN)further extracted advantageous features,reduced the impact of redundant features on the network,and improved network performance.At the same time,in order to ensure the rich-ness of the original features,the output of the ECA module embedded after FPN was overlaid with the output of the backbone network,and the obtained features were used as inputs and passed into the classifier for recognition and de-tection.The results indicated that the improved RetinaNet soybean quality detection model proposed in this article had a precision of 97.39%,an mAP value of 98.64%.

convolutional neural networkssoybean appearance quality inspectionRetinaNetFPNECA module

周春欣、霍怡之、杜有海、蒋敏兰、曾令国、张长江、石小威

展开 >

浙江师范大学物理与电子信息工程学院,金华 321004

新疆阿克苏教育学院,阿克苏 843000

浙江光电子研究院,金华 321004

台州学院电子与信息工程学院,台州 318000

杭州海康威视数字技术股份有限公司,杭州 310000

展开 >

卷积神经网络 大豆外观品质检测 RetinaNet FPN ECA模块

国家自然科学基金项目

42075140

2024

中国粮油学报
中国粮油学会

中国粮油学报

CSTPCD北大核心
影响因子:1.056
ISSN:1003-0174
年,卷(期):2024.39(9)
  • 1
  • 5