首页|基于步态特征的性别识别方法研究

基于步态特征的性别识别方法研究

扫码查看
本文基于步态特征设计了一套人物性别识别模型.以能量图的形式作为该模型的输入,模型采用串联式的网络结构并利用Softmax函数进行最终的人物性别识别.然后将CASIA-B数据库中的步态轮廓图裁剪合成能量图输入模型测试性别识别得到91%以上的整体识别准确率.最后设计实验对比本文模型和VGG、ResNet识别模型,实验结果表明该模型针对人物性别识别有着更好的泛化性能和效率.
Research on Gender Classification Based on Gait Features
This paper designs a set of gender classification model based on gait features.The input of the model is in the form of an energy graph.The model adopts a series-linked network structure and the Softmax function for the final character gender classification.Then,the gait profile in the CASIA-B database is clipped to synthesize an energy profile and input into the model for gender classification testing.The overall classification accuracy is more than 91%.Finally,an experiment is designed to compare the proposed model with the VGG and ResNet classification models.The experimental re-sults show that the model has better generalization performance and efficiency for character gender classification.

Neural networksGait featuresEnergy imageGender classification

李忠浩、罗文田、陈乾、覃华懋

展开 >

中国民用航空飞行学院 四川广汉 618307

神经网络 步态特征 能量图 性别识别

2025

中国民航飞行学院学报
中国民航飞行学院

中国民航飞行学院学报

影响因子:0.292
ISSN:1009-4288
年,卷(期):2025.36(1)