首页|山东烤烟感官质量与化学成分关系及质量预测模型建立

山东烤烟感官质量与化学成分关系及质量预测模型建立

扫码查看
为明确山东烤烟化学成分与感官质量之间的关系,探明影响山东烟叶质量提升的关键化学成分指标,对山东省6个地区代表性烟叶样品开展感官质量评价和常规成分、有机酸、生物碱、单双糖、多酚等5类23种化学指标测定,结合简单相关、方差分析、主成分分析和回归分析等统计方法进行数据分析.筛选出总糖、氯、绿原酸、降烟碱、柠檬酸/烟碱、油酸6个影响山东烟叶品质的关键化学指标,基于6个指标构建山东烟叶感官质量预测模型,验证样本预测值与真实值绝对差值0.43~3.88分,相对误差-5.66%~6.32%,平均误差3.18%.基于关键化学成分构建的感官质量预测模型可为山东烟叶质量的客观评价提供一定的技术支撑.
Relationship Between Sensory Quality and Chemical Component of Flue-cured Tobacco in Shandong Province and Establishment of Quality Prediction Models
In order to explore the relationship between chemical components and sensory quality of flue-cured tobacco in Shandong Province,a sensory quality evaluation and determination of 23 chemical indicators in five categories,including conventional components,organic acids,alkaloids,monosaccharides and polyphenols,were conducted on representative flue-cured tobacco leaves from six regions in Shandong Province.Multiple statistical methods such as simple correlation,analysis of variance,principal component analysis,and regression analysis were used for data analysis.Six key quality indicators including total sugar,chlorine,chlorogenic acid,nornicotine,citric acid/nicotine,and oleic acid were screened.The sensory quality prediction model of Shandong tobacco leaves was constructed.The absolute difference between the predicted value and the actual value was 0.43-3.88 points.The relative error was-5.66%-6.32%,between actual value and predicted value of the verification sample,and the average error was 3.18%.The sensory quality prediction model based on key chemical components can provide certain technical support for the objective quality evaluation of flue-cured tobacco in Shandong Province.

flue-cured tobaccomultivariate statistical analysisquality evaluationchemical componentsprediction model

周显升、李晓阳、刘志广、周小雨、邱承宇、庄志麟、曹建敏

展开 >

山东中烟工业有限责任公司,济南 250013

青岛大学,山东青岛 266071

中国农业科学院烟草研究所,山东青岛 266101

中国农业科学院研究生院,北京 100081

展开 >

山东烤烟 多元统计分析 质量评价 化学成分 预测模型

中国农业科学院科技创新工程山东中烟工业有限责任公司重点项目中国农业科学院基本科研业务费所级统筹项目

ASTIP-TRIC072021370000340022161023202100

2024

中国农学通报
中国农学会

中国农学通报

CSTPCD
影响因子:0.891
ISSN:1000-6850
年,卷(期):2024.40(1)
  • 28