首页|基于多特征的BP神经网络多种植物叶片病害识别研究

基于多特征的BP神经网络多种植物叶片病害识别研究

扫码查看
为准确识别植物的健康状况,更好地对植物进行健康管理和治疗,以芒果、柠檬和石榴3种植物健康和病害叶片为研究对象,设计BP神经网络模型对植物健康状况进行识别.首先提取植物叶片表型特征数据,包括叶片颜色特征、形状特征和纹理特征.其中使用小波变换提取植物叶片的纹理特征,并用PCA主成分分析法对提取的特征数据降维.其次建立BP神经网络模型对植物进行分类识别.采用不同特征组合进行实验,识别准确率最高可达83.9%.采用颜色、形状和纹理组合特征建立的BP神经网络植物叶片健康识别模型具有最好的识别效果,可以便捷、高效地识别植物病害.
Identification of Various Plant Leaf Diseases Based on Multi-feature BP Neural Network
In order to accurately identify the health status of plants and better manage the health of plants,this study took healthy and diseased leaves of pomegranate,lemon and mango plants as the research objects,and designed BP neural network model to identify the health status of plants.Firstly,the color and shape features of plant leaves were extracted,then the texture features of plant leaves were extracted by wavelet transform,and the dimension of extracted feature data was reduced by PCA method.Secondly,BP neural network model was established to classify and recognize plants.The recognition accuracy of different feature combinations was up to 83.9%.The BP neural network based on color,shape and texture features has the best recognition effect,and can identify the disease of various plant leaf conveniently and efficiently.

leaves of plantsdisease identificationfeature extractionprincipal component analysis(PCA)BP neural network

马娜、任宇翔

展开 >

山西农业大学信息科学与工程学院,山西太谷 030801

植物叶片 病害识别 特征提取 主成分分析 BP神经网络

山西省基础研究计划山西农业大学青年科技创新基金

2021030212231412020QC17

2024

中国农学通报
中国农学会

中国农学通报

CSTPCD
影响因子:0.891
ISSN:1000-6850
年,卷(期):2024.40(4)
  • 26