首页|基于多源卫星的黄淮海平原冬小麦种植丰度定量评估

基于多源卫星的黄淮海平原冬小麦种植丰度定量评估

扫码查看
针对大范围冬小麦种植丰度定量评估和种植面积测量业务化中存在的,高分辨率影像覆盖能力较低难以在大空间范围内推广应用,与中分辨率影像提取精度较低之间相互制约的现实问题,选择均匀分布于黄淮海平原的6个Sentinel-2条带位置为试验区,通过分别构建随机森林分类模型提取Sentinel-2的冬小麦种植区域,并将Sentinel-2冬小麦种植区域合成为250 m空间分辨率的种植丰度,结合时序MODIS NDVI训练随机森林回归模型,预测得到黄淮海平原冬小麦种植丰度,从而实现大范围冬小麦种植丰度定量评估和种植面积测量.相比传统MODIS NDVI时序数据提取冬小麦种植区域,还需额外进行混合像元分解后才能得到种植丰度,本研究使用随机森林回归方法直接获得了每个像元的种植丰度,省去了混合像元分解步骤.训练的各条带位置随机森林分类模型,F1 score达0.9983以上,当训练集样本量占总样本量的2%以上时随机森林回归模型趋于稳定,当样本量占比达50%时模型最适宜使用,R2达0.8140,样本量占比达90%时,回归模型R2达到最大值为0.8162.使用模型测量冬小麦种植丰度和种植面积分别能够达到Sentinel-2精度的91%和99%以上,满足了大范围冬小麦种植丰度定量评估和种植面积测量的业务化精度要求.
Quantitative Assessment of Winter Wheat Planting Abundance in Huang-Huai-Hai Plain Based on Multi-source Satellite Data
To overcome the challenge posed by the mutual restriction between the limited coverage capacity of high-resolution images,which hinders their promotion and application on large spatial scales,and the relatively low extraction accuracy of medium-resolution images in quantitatively assessing winter wheat planting abundance and measuring planting areas over extensive regions,this study conducted experiments in the Huang-Huai-Hai Plain.Six evenly distributed Sentinel-2 tiles covering a vast spatial area served as the experimental region.The winter wheat planting area,derived from Sentinel-2 data,was converted into planting abundance with a spatial resolution of 250 meters.Subsequently,planting abundance data and time-series MODIS NDVI were combined to train a random forest regression model,aiming to achieve quantitative assessments of winter wheat planting abundance and measurements of planting areas on a large scale.In contrast to traditional methods relying on MODIS NDVI time-series data for extracting winter wheat planting areas,which necessitate additional mixed image decomposition to ascertain planting abundance,this study utilized the random forest regression approach to directly ascertain the planting abundance of each pixel,thereby eliminating the mixed image decomposition step.The trained random forest classification model exhibited an F1 score exceeding 0.9983 across different tiles.The random forest regression model tended to stabilize when the training set sample size comprised over 2%of the total sample size.The model proved most suitable for use at a 50%sample size,yielding an R2 value of 0.8140.At a 90%sample size,the regression model achieved a maximum R2 of 0.8162.The random forest regression models predicted winter wheat planting abundance and area with accuracies exceeding 91%and 99%of Sentinel-2's accuracy,respectively.This meets the operational accuracy requirements for large-scale quantitative evaluations of winter wheat planting abundance and area measurements.

winter wheatcombination of medium and high resolutionplanting abundancerandom forestclassificationregression

王锦杰、陈昊、庞礴、周航、沈伟、颜雅琼、徐敏

展开 >

宿迁市气象局,江苏宿迁 223800

江苏省气象台,南京 210019

江苏省气候中心,南京 210019

冬小麦 中高分辨率结合 种植丰度 随机森林 分类 回归

江苏省气象局揭榜挂帅项目江苏省气象局青年基金项目江苏省第六期"333人才"培养支持项目江苏省气象局青年基金项目

KZ202302KQ202420KQ202330

2024

中国农学通报
中国农学会

中国农学通报

CSTPCD
影响因子:0.891
ISSN:1000-6850
年,卷(期):2024.40(25)
  • 19