首页|基于残差神经网络的水稻氮磷钾元素营养诊断

基于残差神经网络的水稻氮磷钾元素营养诊断

扫码查看
为实现水稻氮磷钾3种主要营养元素缺失种类的快速、准确诊断识别,以晚稻"黄华占"为研究对象,进行水稻大田栽培试验。分别设置:4个施氮水平,施肥总量分别为:N0(0kg/hm2)、N1(130kg/hm2)、N2(260 kg/hm2)以及 N3(390 kg/hm2);4 个施磷水平,P0(0 kg/hm2)、P1(300 kg/hm2)、P2(600 kg/hm2)和 P3(780 kg/hm2);4 个施钾水平,K0(0kg/hm2)、K1(90 kg/hm2)、K2(180 kg/hm2)和K3(270 kg/hm2)。在水稻分蘖期和拔节期,首先扫描获得水稻各分蘖茎完全展开的顶三叶叶片图像数据,生成对抗网络(Generative Adversarial Network,GAN)对水稻图片进行超分辨率重构后,并通过图像预处理对数据进行归一化和扩充;此外,在保留残差神经网络Resnet34的主干结构的情况下,在残差块中引入注意力机制和软阈值化函数,并将在ImageNet图像数据集上得到的预训练权重迁移至改进了残差结构的模型中,从而对水稻分蘖期,拔节期叶片图像数据进行氮磷钾营养元素缺素胁迫诊断识别。结果表明:改进后的Resnet34网络在重度缺肥梯度的2个时期测试准确率分别达到98。98%和98。10%,在中度缺肥梯度的准确率达到了 97。99%和95。90%。在过量肥梯度的准确率为91。87%和88。49%;与改进前的网络相比,在分蘖期和拔节期的水稻图像测试集上,三元素胁迫分类准确率最大提升了 29。58%和29。75%;分析混淆矩阵发现对氮胁迫的识别准确率最佳,在训练曲线上表现出更快的收敛速度。综上,本研究建立的水稻氮磷钾营养元素诊断模型能很好地在水稻分蘖期,拔节期完成水稻氮磷钾3类营养元素缺素胁迫诊断,预测水稻生长营养状态,可为水稻氮磷钾元素营养诊断提供科学参考。
Nutritional diagnosis of nitrogen,phosphorus and potassium in rice based on the residual neural network
To achieve rapid and accurate diagnosis and recognition of three major nutrient element deficiency types in rice,one late rice variety"Huanghuazan"was selected as the research object for field cultivation trials.Different treatments are set as follows:Four nitrogen application levels are N0(0 kg/hm2),N1(130 kg/hm2),N2(260 kg/hm2)and N3(390 kg/hm2);Four phosphorus application levels are P0(0 kg/hm2),P1(300 kg/hm2),P2(600 kg/hm2),P3(780 kg/hm2);Four potassium application levels are K0(0 kg/hm2),K1(90 kg/hm2),K2(180 kg/hm2)and K3(270 kg/hm2).During the tillering and jointing stages of rice growth,the high-resolution image data of the top three fully expanded leaves from each tiller were scanned,and after generative adversarial network(GAN)reconstruction of rice image with super-resolution,the data underwent normalization and expansion through image preprocessing;Additionally,attention mechanisms and soft thresholding functions were integrated into the residual block while preserving the backbone structure of residual neural network Resnet34;Furthermore,pre-trained weights obtained from the ImageNet dataset were transferred to the model with an improved residual structure.The results indicate that:The improvement of Resnet34 network yielded extraordinary results,exhibiting a remarkable accuracy of 98.98%and 98.10%within the severe fertilizer deficiency gradients during these pivotal growth phases.Resnet34 network demonstrated robustness in moderate deficiency scenarios,and achieved the accuracies of 97.99%and 95.90%,respectively.Regarding excessive fertilizer application,the Resnet34 model maintained a commendable performance and achieved accuracies of 91.87%and 88.49%across the respective gradients.Compared with the pre-improvement network,the three-element stress classification accuracy of the rice image test set at the tillering stage and jointing stage increased by 29.58%and 29.75%;The analysis of the confusion matrix indicated that the identification accuracy of nitrogen stress was superior,and the training curve demonstrated faster convergence speed.In conclusion,the model established in this study exhibits exceptional proficiency in diagnosing nutrient deficiency stress during the pivotal tillering and jointing stages of rice growth,and can accurately predict the rice nutritional status.This study provides a scientific reference for the nutritional diagnosis of nitrogen,phosphorus and potassium in rice.

ricenitrogen,phosphorus and potassium nutritional diagnosisResnet34attention mechanismsoft thresholding

孔杰、杨红云、黄淑梅、吴正、孙爱珍

展开 >

江西农业大学软件学院,南昌 330045

江西农业大学计算机与信息工程学院,南昌 330045

水稻 氮磷钾营养诊断 Resnet34 注意力机制 软阈值化

2025

中国农业大学学报
中国农业大学

中国农业大学学报

北大核心
影响因子:0.971
ISSN:1009-508X
年,卷(期):2025.30(2)