首页|基于多角度数据融合的养殖场通道中奶牛身份识别算法研究

基于多角度数据融合的养殖场通道中奶牛身份识别算法研究

扫码查看
为提高智慧奶牛养殖场生产管理效率,提出基于养殖场固定通道中多角度数据融合的奶牛身份识别算法。首先,在养殖场通道中安装2个不同背面和3个不同侧面的摄像头,采集60头奶牛的身份识别数据,构建奶牛的多角度身份识别数据集;然后,训练并对比分析7个骨干网络在奶牛身份识别数据集上的表现。结果表明,HRNet骨干网络在奶牛的正背面、斜背面、前斜侧面、后斜侧面和正侧面上的效果较好,Rank@1准确率分别达到96。55%、98。08%、91。23%、95。83%和89。36%,平均精度均值分别达到83。28%、89。88%、75。09%、84。48%和78。27%;采用身份识别较好的HRNet网络构建多角度数据融合奶牛身份识别算法,在设定相似度阈值为0。9时,奶牛身份识别准确率在数据集上达到100%。研究结果为奶牛养殖场固定通道中的牛身份识别提供了一种解决方案。
Research on Dairy Cattle Identification Algorithm in Farm Access Based on Multi-angle Data Fusion
In order to enhance the production management efficiency of smart dairy farms,a multi-angle data fusion algorithm for dairy cattle identification in fixed lanes was proposed.Initially,at the dairy farm,cameras were installed to capture 2 rear views and 3 different lateral perspectives of dairy cattle,and identity data from 60 cows were collected,forming a comprehensive multi-angle dataset for dairy cattle;subsequently,training and comparative analysis were performed on a dataset for dairy cattle identity recognition to evaluate the performance of 7 backbone networks.The results showed that the HRNet backbone network achieved favorable performance on the frontal back,oblique back,front oblique side,rear oblique side and frontal side views of the dairy cattle,and the rank@1 reached 96.55%,98.08%,91.23%,95.83%and 89.36%,and the mean average precision reached 83.28%,89.88%,75.09%,84.48%and 78.27%,respectively.A multi-angle data fusion algorithm for dairy cattle identification was constructed using the best-performing HRNet network,by setting the similarity threshold to 0.9,the algorithm achieved a 100%accuracy rate on the dataset.Above results provided an effective solution for cattle identification in fixed channels of dairy cattle farms.

cattle identificationintelligent farmingdata fusionmultiple perspectivesfixed channel

张晓卫、陈波、王月明、李子剑、张继红、曹天一

展开 >

内蒙古科技大学自动化与电气工程学院,内蒙古 包头 014000

牛身份识别 智能养殖 数据融合 多角度 固定通道

2024

中国农业科技导报
中国农村技术开发中心

中国农业科技导报

CSTPCD北大核心
影响因子:1.252
ISSN:1008-0864
年,卷(期):2024.26(12)