首页|基于多源遥感数据的茶叶种植面积时空变化研究

基于多源遥感数据的茶叶种植面积时空变化研究

扫码查看
茶叶是重要的经济树种之一,分析茶叶种植面积的时空演变规律可为优化河南茶叶布局提供科学依据。基于2000-2020年Landsat和Sentinel-2卫星数据,结合实地调查数据,采用随机森林分类方法获得河南省信阳市浉河区茶叶种植面积空间分布信息,采用趋势分析、重心迁移等方法对浉河区茶叶生产空间布局与时空变化趋势进行分析。结果表明:光谱+植被指数+纹理特征组合对茶叶分类精度最高,总体精度可达89。02%,Kappa系数为0。90;从时序变化来看,2000-2020年浉河区茶叶种植面积总体上呈现快速增长到稳步上升趋势。从空间变化来看,浉河区茶叶种植空间分布相对集中,主要分布于北部乡镇的丘陵地区和浅层山区。从重心变化来看,近20年浉河区茶叶种植面积重心呈现出由东向西转移的趋势,重心迁移总距离为5。47 km,迁移速度为0。273 5 km·a-1。研究结果为茶叶科学种植提供了数据支撑。
Study on the Spatio-Temporal Changes of Tea Planting Area Based on Multi-Source Remote Sensing
Tea is one of the important economic tree species.Studying the spatial and temporal changes of tea production is of great significance for optimizing the tea layout in Henan Province.Based on Landsat and Sentinel-2 satellite data from 2000 to 2020,combining with field survey data,the random forest classification method was used to obtain the spatial distribution information of tea area in Shihe District,Xinyang city of Henan province.Trend analysis,center of gravity migration and other methods were used to analyze the spatial distribution and temporal and spatial trends of tea production in Shihe District.The results showed that the combination of spectrum,vegetation index and texture feature had the highest classification accuracy of tea,with the overall accuracy of 89.02%and Kappa coefficient of 0.90.In terms of temporal changes,tea production in Shihe District from 2000 to 2020 generally showed a trend of rapid growth to steady rise.In terms of spatial change,the distribution of tea in Shihe District was relatively concentrated,mainly distributed in hilly areas and shallow mountainous areas in northern towns.From 2000 to 2020,the gravity center migration direction of tea area in Shihe District showed a trend from east to west.The total distance of gravity center migration was 5.47 km,and the migration speed was 0.273 5 km·a-1.This study provides scientific data support and theoretical basis for the scientific planting of tea in Shihe District.

teaareamulti-sourceremote sensingtemporal and spatial changes

张彦、王来刚、贺佳、郭燕、杨秀忠、张红利、刘婷

展开 >

河南省农业科学院农业信息技术研究所,农业农村部黄淮海智慧农业技术重点实验室,河南省农作物种植监测与预警工程研究中心,郑州 450002

茶叶 面积 多源 遥感 时空变化

2024

中国农业科技导报
中国农村技术开发中心

中国农业科技导报

CSTPCD北大核心
影响因子:1.252
ISSN:1008-0864
年,卷(期):2024.26(12)