Differences in Nitrogen Efficiency and Nitrogen Metabolism of Wheat Varieties Under Different Nitrogen Levels
[Objective]This study aims to clarify the difference in nitrogen metabolism of wheat varieties with different nitrogen use efficiencies and to achieve optimization of nitrogen application and high-yield.[Method]In this study, Luomai 18 and Yumai 49-198(LH), Xinong 509 and Yunong 202 (LL) were selected from 16 wheat varieties in yield conditions, and GS activity, soluble protein, free amino acids, NO3- and total nitrogen content of leaves were detected under nitrogen levels of N0 (0 kg·hm-2), N120 (120 kg·hm-2) and N225 (225 kg·hm-2).[Result]The results showed that GS activity, soluble protein, free amino acids, NO3- and total nitrogen content in leaf, N accumulation of aboveground and grain, yield and NPE of Luomai 18 and Yumai 49-198 (LH) were significantly higher than that of Xinong 509 and Yunong 202 (LL). GS activity, soluble protein, free amino acids, NO3- and total nitrogen content in leaf, N accumulation of above ground and grain, yield increased with the increasing of nitrogen level, and the NPE reduced. But the response of the two types of varieties to nitrogen levels was different, compared with N0, the growing rate of GS activity, soluble protein, free amino acids, NO3- and total nitrogen content in leaf, N accumulation of above-ground of Xinong 509 and Yunong 202 (LL) were significantly higher than that of Luomai 18 and Yumai 49-198(LH), however, the growing rate of yield of Xinong 509 and Yunong 202 (LL) were significantly lower than that of Luomai 18 and Yumai 49-198(LH); the decreasing range of NPE of Luomai 18 and Yumai 49-198 (LH) was significantly higher than that of Xinong 509 and Yunong 202 (LL).[Conclusion]Compared with Xinong 509 and Yunong 202 (LL), the reason that Luomai 18 and Yumai49-198 (LH) had higher yields and nitrogen use efficiency was that they had higher GS activities. Therefore the ability of nitrogen uptake and assimilation were improved, the nitrogen physiological efficiency in the whole nitrogen metabolism process was increased and better yields were obtained. Increasing the supply of nitrogen, yields of Luomai 18 and Yumai49-198 (LH) were significantly promoted. Luomai 18 and Yumai49-198 (LH) have a stronger tolerance to low nitrogen stress and the potential of yield is greater; Xinong 509 and Yunong 202 (LL) are more sensitive to nitrogen, but their ability in distribution of N is lower.