首页|增量学习在滑坡易发性评价中的应用——以甘肃省天水市为例

增量学习在滑坡易发性评价中的应用——以甘肃省天水市为例

扫码查看
为了提升机器学习模型在滑坡易发性评价任务中的泛化能力,以甘肃天水市为例,采用基于LightGBM的增量学习模型,并利用Autogluon自动机器学习框架实现模型的超参数优化和堆叠,以及使用SHAP可解释框架进行特征选择和数据异常分析,构建了适用于滑坡易发性评价的增量学习模型.通过在天水市不同区域采集的滑坡灾害数据进行模型验证,结果表明,基于增量学习的滑坡易发性评价模型能够有效地识别和预测滑坡易发区域,根据新数据集自适应调整模型,并且提高模型的性能.
Application of incremental learning in landslide susceptibility assessment:A case study of Tianshui,Gansu Province
To enhance the generalization ability of machine learning models in the assessment of landslide susceptibility,this paper takes the city of Tianshui as an example and employs an incremental learning model based on LightGBM.By utilizing the Autogluon automated machine learning framework,the model's hyperparameter optimization and mdoel stacking are implemented.Additionally,the SHAP explainable framework is used for feature selection and data anomaly analysis.By using the above methods we construct an incremental learning model suitable for landslide susceptibility assessment.Model validation using landslide disaster data collected from various regions in Tianshui city demonstrates that the incremental learning model for landslide susceptibility can effectively identify and predict landslide-prone areas.It adapts to new datasets by self-adjusting the model and improves model performance.

suspectibility of landslidemachine learningincremental learningfeature selectioninterpretability

严天笑、张建通、朱月琴、刘浩然、朱浩濛

展开 >

防灾科技学院,河北廊坊 065201

应急管理部国家自然灾害防治研究院,北京 100085

交信北斗科技有限公司,北京 100011

浙江省地质院,浙江杭州 310000

展开 >

滑坡易发性 机器学习 增量学习 特征选择 可解释性

应急管理部国家自然灾害防治研究院基本科研业务专项国家自然科学基金项目河北省大学生创新创业训练计划项目

ZDJ2022-4541872253S202211775007

2024

地质通报
中国地质调查局

地质通报

CSTPCD北大核心
影响因子:1.226
ISSN:1671-2552
年,卷(期):2024.43(4)
  • 14