首页|公共数据利用水平提升的影响因素与组态路径研究——基于面板数据的定性比较分析

公共数据利用水平提升的影响因素与组态路径研究——基于面板数据的定性比较分析

扫码查看
为促进公共数据利用,释放数据价值,基于供需理论视角,构造SDE模型,运用面板数据QCA方法检验中国2018-2022年的省级数据,揭示公共数据利用水平的影响因素与组态路径及其时空差异.结果表明,未发现生成高公共数据利用水平和低公共数据利用水平的必要条件.存在四种生成高公共数据利用水平的组态,包括非平衡供给型、平衡供给型、供需联动型和综合驱动型,以及两种生成低公共数据利用水平的组态.时间维度上,各组态解释力度整体上稳中有升,供需联动型和非平衡供给型分别经历了从领跑到齐平和明显跃升的变化过程.空间维度上,各组态对于教育经费相对较低、互联网端口数量相对较少的地区有更强的解释力度.平衡供给型组态和供需联动型组态覆盖了更多东部地区案例,而非平衡供给型组态和综合驱动型组态更多覆盖了中部地区案例.说明促进公共数据利用不仅需要供给侧的"推力",也应当发挥需求侧的"拉力",同时,各地区应当注重资源配置组合,因时因地制宜发挥自身优势.
Factors and Configuration Paths Influencing the Improvement of Public Data Utilization Level——A qualitative comparative analysis based on panel data
To promote the utilization of public data and unleash its value,a SDE model is constructed from the perspective of supply and demand theory.Panel data QCA is used to test provincial-level data in China from 2018 to 2022,revealing the influencing factors,configuration paths,and its spatiotemporal differences of public data utilization.The results indicate that no necessary conditions are found for generating high and low levels of public data utilization.There are four configurations that generate high levels of public data utilization,including unbalanced supply type,balanced supply type,supply-demand linkage type,and comprehensive type,as well as two configurations that generate low levels of public data utilization.On the temporal dimensions,the explanatory power of each configuration has remained stable with an overall increase.The supply-demand linkage configuration and the unbalanced supply configuration have gone through a process of change from leading to leveling and a significant leap,respectively.On the spatial dimension,each configuration has a stronger explanation for regions with relatively low education funds and relatively few Internet ports.Promoting the utilization of public data requires both supply and demand sides.At the same time,provinces should pay attention to resource allocation combinations and leverage their own advantages according to time and local conditions.

public data utilizationopen datapublic datadata elementqualitative comparative analysispanel data QCA

汤志伟、罗意

展开 >

电子科技大学 公共管理学,成都 611731

电子科技大学 深圳高等研究院,成都 611731

电子科技大学 经济与管理学院,成都 611731

公共数据利用 数据开放 公共数据 数据要素 定性比较分析 面板数据QCA

2024

四川轻化工大学学报(社会科学版)
四川理工学院

四川轻化工大学学报(社会科学版)

CHSSCD
影响因子:1.524
ISSN:2096-7535
年,卷(期):2024.39(5)