首页|基于GA-RF的不同人群手足气味特征组分识别刻画研究

基于GA-RF的不同人群手足气味特征组分识别刻画研究

扫码查看
目的 筛选人体手足气味中与性别、年龄相关的特征组分,进行不同人群性别与年龄特征刻画.方法 采用热解吸-气相色谱-质谱法(thermal desorption-gas chromatography-mass spectrometry,TD-GC-MS)检测人体手足中的挥发性气味信息,利用单因素分析与多因素分析筛选出不同性别、年龄人群手足气味中的差异组分,并通过遗传算法-随机森林(genetic algorithm-random forest,GA-RF)机器学习方法预测不同性别、年龄的特征组分,并构建判别模型.结果 从人体手足部位中共检测出 304 种挥发性物质,通过t检验和正交偏最小二乘判别分析(orthogonal partial least squares-discriminant analysis,OPLS-DA)筛选P<0.05且变量投影重要性(variable importance in projection,VIP)>1的差异组分,使用遗传算法(genetic algorithm,GA)优化随机森林(random forest,RF)算法构建判别模型,利用手足特征进行性别识别的准确率分别为92.02%和81.46%,年龄识别的准确率分别为76.13%和73.49%.结论 基于统计学和GA-RF机器学习方法,筛选出人体手足气味中不同性别、年龄的差异标志物,构建判别模型,为人体气味在法庭科学领域中的应用提供新思路.
Study on Characterization of Hand and Foot Odor in Different Populations Based on Genetic Algorithm-Random Forest
Objective To identify and screen characteristic volatile components in human hand and foot odors associated with gender and age,thereby characterizing the attributes of different population groups.Methods Thermal desorption-gas chromatography-mass spectrometry(TD-GC-MS)was used to analyze the volatile compounds from human hands and feet.Single-factor and multi-factor analyses were used to identify different components related to gender and age across various populations.Genetic algorithm-random forest(GA-RF)machine learning techniques were used to predict the characteristic components of different genders and ages,and to construct a classification model.Results A total of 304 volatile components were identified from human hand and foot odors.They were discerned through t-tests and orthogonal partial least squares-discriminant analysis(OPLS-DA).Components with P<0.05 and VIP>1 were selected.Genetic algorithm(GA)was used to optimize random forest(RF)to construct a judgment model.The accuracies of gender identification using hand and foot features were 92.02%and 81.46%,respectively,and those for age identification were 76.13%and 73.49%,respectively.Conclusion Based on statistics and GA-RF machine learning methods,gender and age difference markers in human hand and foot odor were screened,and a prediction model was constructed,providing a novel approach for the biometric characterization of human odor in forensic science.

thermal desorptiongas chromatography-mass spectrometry(GC-MS)hand and foot odorgenetic algorithm(GA)random forest(RF)identification

张宇、胡晓光、宋歌、董林沛、赵鹏、张云峰、任昕昕

展开 >

中国人民公安大学 侦查学院,北京 100038

公安部鉴定中心,北京 100038

热解吸 气相色谱-质谱法 手足气味特征 遗传算法 随机森林 识别

2025

中国司法鉴定
司法部司法鉴定科学技术研究所

中国司法鉴定

影响因子:0.485
ISSN:1671-2072
年,卷(期):2025.(1)