首页|智能化药品不良反应报告辅助评价工具研究

智能化药品不良反应报告辅助评价工具研究

扫码查看
目的:随着药品不良反应报告数量的增加,监测机构的工作压力日益增大.为提高药品不良反应报告评价效率和质量,本研究基于广东省药物警戒与风险管控平台,探索研究智能化药品不良反应报告辅助评价工具.方法:建立药品不良反应报告常用基础数据库,利用规则驱动模型和自然语言处理技术,对报告内容进行特征提取、匹配和分析,实现一键生成校验结果和补充材料意见,辅助监测人员完成评价工作.结果:基于常用基础数据库,研究构建了多个规则驱动模型,并设计了智能化药品不良反应报告辅助评价工具的功能架构和界面.结论:本研究开发的智能化药品不良反应报告辅助评价工具有助于提高报告评价效率和质量,推动药品不良反应监测工作智慧化升级.
Research on an Intelligent Auxiliary Evaluation Tool for Adverse Drug Reaction Reports
Objective:With the increasing number of adverse drug reaction(ADR)reports,the workload for monitoring institutions continues to rise.In order to improve the efficiency and quality of ADR report evaluations,this study explores an intelligent auxiliary evaluation tool based on the pharmacovigilance and risk control platform of Guangdong Province.Methods:A common basic database for ADR reports was established,utilizing rule-driven models and natural language processing techniques to extract,match,and analyze the report content.This enables one-click generation of verification results and suggestions for supplementary material,assisting monitoring personnel in completing evaluations.Results:Based on the common basic database,a number of rule-driven models were constructed,and the functional framework and interface of the intelligent auxiliary evaluation tool were designed.Conclusion:The tool developed in this study can improve the efficiency and quality of ADR report evaluations,promoting the intelligent upgrading of ADR monitoring processes.

adverse drug reaction reportauxiliary evaluation toolrule-driven modelnatural language processingintelligence

任韡、黄彦、朱枫、喻锦扬、王青

展开 >

清华大学药物警戒信息技术与数据科学创新中心

广东省药品不良反应监测中心

清华珠三角研究院药物警戒创新研究中心

药品不良反应报告 辅助评价工具 规则驱动模型 自然语言处理 智能化

2023年中国药品监督管理研究会课题

2023-Y-Y-021

2024

中国食品药品监管
中国医药报社

中国食品药品监管

影响因子:0.099
ISSN:1673-5390
年,卷(期):2024.(9)
  • 10