首页|基于PET-CT和超声造影构建甲状腺癌术后复发转移的预测模型

基于PET-CT和超声造影构建甲状腺癌术后复发转移的预测模型

Prediction model of postoperative recurrence and metastasis of thyroid cancer constructed based on PET-CT and contrast-enhanced ultrasound

扫码查看
目的 基于正电子发射计算机断层显像(PET-CT)和超声造影参数构建甲状腺癌(TC)患者术后复发转移的预测模型,为甲状腺癌的治疗提供依据.方法 回顾性选取保定市第一中心医院2018年1月-2021年3月收治的行手术治疗的116例TC患者,患者术前均进行PET-CT和超声造影检查,并收集患者临床相关资料.术后对患者进行为期3年的随访,根据随访期间是否发生复发转移将其分为发生组(32例)和未发生组(84例).患者术后复发转移的影响因素分析采用多因素逐步Logistic回归模型;并基于PET-CT和超声造影参数构建列线图预测模型,分析患者术后复发转移的预测效能用受试者工作特征(ROC)曲线下面积(AUC).结果 发生组患者最大标准摄取值(SU-Vmax)高于未发生组,达峰时间(TTP)、峰值强度(PI)低于未发生组(P<0.05).发生组患者临床分期为Ⅲ/Ⅳ期、有淋巴结转移占比均高于未发生组,术后131碘治疗占比低于未发生组(P<0.05).多因素逐步Logistic回归分析显示,SUVmax 水平(OR=4.631,95%CI:2.077~10.323)、临床分期(OR=5.427,95%CI:2.653~11.098)是患者发生术后复发转移的独立危险因素,PI水平(OR=0.254,95%CI:0.136~0.471)、术后131碘治疗(OR=0.306,95%CI:0.110~0.849)是独立保护因素(P<0.05).基于上述影响因素构建的列线图预测模型经Bootstrap法内部验证,C-index指数为0.836(95%CI:0.734~0.938),预测患者术后复发转移的校正曲线与理想曲线趋近(P>0.05).ROC曲线显示,列线图模型预测患者术后复发转移的敏感度为87.50%、特异性为88.10%,AUC为0.881(95%CI:0.794~0.968)(P<0.05).结论 基于PET-CT参数SUVmax和超声造影参数PI构建的列线图预测模型可较好的预测TC患者术后复发转移发生风险.
Objective To construct a predictive model for postoperative recurrence and metastasis of thyroid cancer(TC)based on positron emission computed tomography(PET-CT)and contrast-enhanced ultrasound parameters.Meth-ods A total of 116 patients with TC who underwent surgical treatment in our hospital from January 2018 to March 2021 were retrospectively selected.All patients underwent PET-CT and contrast-enhanced ultrasound before operation,and the clinical data of the patients were collected.The patients were followed up for 3 years after operation,and they were divided into the occurrence group(32 cases)and the non-occurrence group(84 cases)according to whether recur-rence and metastasis occurred during the follow-up period.The influencing factors of postoperative recurrence and me-tastasis were analyzed by multivariate stepwise Logistic regression model.A nomogram prediction model was construc-ted based on PET-CT and CEUS parameters.The area under the receiver operating characteristic(ROC)curve(AUC)was used to analyze the predictive efficacy of the model for postoperative recurrence and metastasis.Results The maxi-mum standardized uptake value(SUVmax)in the occurrence group were higher than those in the non-occurrence group,and the time to peak(TTP),peak intensity(PI)was lower than that in the non-occurrence group(P<0.05).The pro-portion of patients with clinical stage Ⅲ/Ⅳ and lymph node metastasis in the occurrence group was higher than that in the non-occurrence group,and the proportion of postoperative 131 iodine treatment was lower than that in the non-oc-currence group(P<0.05).Multivariate stepwise Logistic regression analysis showed that SUVmax level(OR=4.631,95%CI:2.077~10.323),clinical stage(OR=5.427,95%CI:2.653~11.098)were independent risk factors for postop-erative recurrence and metastasis,and PI level(OR=0.254,95%CI:0.136~0.471),postoperative 131I treatment(OR=0.306,95%CI:0.110~0.849)were independent protective factors(P<0.05).The nomogram prediction model based on the above influencing factors was internally verified by the Bootstrap method,and the C-index was 0.836(95%CI:0.734~0.938).The calibration curve for predicting postoperative recurrence and metastasis was close to the ideal curve(P>0.05).The ROC curve showed that the sensitivity of the nomogram model for predicting postoperative recur-rence and metastasis was 87.50%,the specificity was 88.10%,and the AUC was 0.881(95%CI:0.794~0.968)(P<0.05).Conclusion The nomogram prediction model based on PET-CT parameter SUVmax and CEUS parameter PI can better predict the risk of postoperative recurrence and metastasis in TC patients.

Thyroid cancerPostoperative recurrence and metastasisPositron emission computed tomographyCon-trast-enhanced ultrasoundPrediction model

郭星、柴健、张建阳、刘冲、陈学谦、李小龙、张惠卿

展开 >

保定市第一中心医院肿瘤内科,河北 保定 071000

河北省保定市第一中心医院普通外一科,河北 保定 071000

河北省保定市第一中心医院核医学科,河北保定 071000

河北省保定市第一中心医院医学影像科,河北保定 071000

展开 >

甲状腺肿瘤 术后复发转移 正电子发射计算机断层显像 超声造影 预测模型

国家自然科学基金

81773178

2024

中国实验诊断学
吉林大学中日联谊医院 上海交通大学医学院附属瑞金医院

中国实验诊断学

CSTPCD
影响因子:1.273
ISSN:1007-4287
年,卷(期):2024.28(8)