首页|数据缺失机制对逐步回归变量筛选的影响

数据缺失机制对逐步回归变量筛选的影响

扫码查看
目的 评价各种数据缺失机制对逐步回归变量筛选结果的影响.方法 通过模拟产生不同缺失机制和缺失类型的数据,用筛选到的真实变量的个数和损失函数大小作为指标,评价其对逐步同归的影响.结果 完整数据情况下的筛选表现优于各缺失机制卜表现;缺失类型比缺失机制对筛选结果的影响更为明显.结论用逐步回归对含缺失值的数据进行变量筛选时,需要关注缺失机制和缺失类型.
The Effects of Different Missing Mechanisms on Stepwise Variable Selection
Objective To study the effects of different missing mechanisms on stepwise variable selection in linear regression. Methods Data with different missing mechanisms and patterns were simulated and the performance of stepwise variable selection was evaluated using: the number of authentic variables that were selected and loss function I. E.. Results Stepwise selection using the complete data had the best performance, and the missing pattern had a greater impact on than missing mechanism type. Conclusion When performing stepwise selection on data with missing values, it is important to understand the type of missing pattern and not just the missing mechanism.

Missing dataStepwise variable selection

廖慧敏、林燧恒

展开 >

复旦大学公共卫生学院公共卫生安全教育部重点实验室(200032)

缺失数据 逐步回归

2011

中国卫生统计
中国卫生信息学会 中国医科大学

中国卫生统计

CSTPCDCSCD北大核心
影响因子:1.172
ISSN:1002-3674
年,卷(期):2011.28(4)
  • 4
  • 4