首页|基于SEAIQR模型与Dropout-LSTM模型的西安市COVID-19疫情趋势预测

基于SEAIQR模型与Dropout-LSTM模型的西安市COVID-19疫情趋势预测

扫码查看
目的 基于传染病动力学SEAIQR(susceptible-exposed-asymptomatic-infected-quarantined-removed)模型和Dropout-LSTM(Dropout long short term memory network)模型预测西安市新型冠状病毒肺炎(COVID-19)疫情的发展趋势,为评估"动态清零"策略防控效果提供科学依据.方法 考虑到西安市本轮疫情存在大量的无症状感染者、依时变化的参数以及采取的管控举措等特点,构建具有阶段性防控措施的时变SEAIQR模型.考虑到COVID-19 疫情数据的时序性特征及它们之间的非线性关系,构建深度学习Dropout-LSTM模型.选用2021 年12 月9 日-2022 年1 月31 日西安市新增确诊病例数据进行拟合,用 2022 年2 月1 日-2022 年2 月7 日数据评估预测效果,计算有效再生数(Rt)并评价不同参数对疫情发展的影响.结果 SEAIQR模型预测的新增确诊病例拐点预计在 2021 年 12 月 26 日出现,约为 176例,疫情将于 2022 年 1 月 24 日实现"动态清零",模型R2=0.849.Dropout-LSTM模型能够体现数据的时序性与非线性特征,预测出的新增确诊病例数与实际情况高度吻合,R2=0.937.Dropout-LSTM模型的MAE和RMSE均较SEAIQR模型低,说明预测结果更为理想.疫情暴发初期,R0 为 5.63,自实施全面管控后,Rt 呈逐渐下降趋势,直到 2021 年 12月27 日降至1.0 以下.随着有效接触率不断缩小、管控措施的提早实施及免疫阈值的提高,新增确诊病例在到达拐点时的人数将会持续降低.结论 建立的Dropout-LSTM模型实现了较准确的疫情预测,可为COVID-19 疫情"动态清零"防控决策提供借鉴.
Prediction of COVID-19 Epidemic in Xi'an based on SEAIQR Model and Dropout-LSTM Model
Objective This study aims to predict the coronavirus disease 2019(COVID-19)epidemic in Xi'an based on SEAIQR model and Dropout-LSTM model,and to provide a scientific basis for evaluating the effectiveness of the"dynamic zero-COVID policy".Methods Considering a large number of asymptomatic infections,the changing parameters,and control procedures,we developed a time-dependent susceptible-exposed-asymptomatic-infected-quarantined-removed(SEAIQR)model with stage-specific interventions.Considering the time-series characteristics of COVID-19 data and the nonlinear relationship between them,we constructed a deep learning Dropout-LSTM model.The data of newly confirmed cases in Xi'an from December 9th,2021 to January 31st,2022 were used to fit the model,and the data from February 1st,2022 to February 7th,2022 were used to evaluate the model performance of forecasting.We then calculated the effective reproduction number(Rt)and analyzed the sensitivity of the different measurement scenarios.Results The peak of newly confirmed cases predicted by the SEAIQR model would appear on December 26th,2021,with 176 cases,and the"dynamic zero-COVID policy"may be achieved in January 24th,2022,with R2=0.849.The Dropout-LSTM model can reflect the time-series and nonlinear characteristics of the data,and the predicted newly confirmed cases were highly consistent with the actual situation,with R2=0.937.The MAE and RMSE of the Dropout-LSTM model were lower than those of the SEAIQR model,indicating that the predicted results were more ideal.At the beginning of the outbreak,R0 was 5.63.Since the implementation of comprehensive control,Rt has shown a gradual downward trend,dropping to below 1.0 on December 27th,2021.With the reduction of effective contact rate,the early implementation of control measures and the improvement of immunity threshold,the peak of newly confirmed cases will continue to decrease.Conclusion The proposed Dropout-LSTM model forecasts the epidemic well,which can provide a reference for decision-making of the"dynamic zero-COVID policy."

COVID-19SEAIQR modelDropout-LSTM modelDynamic zero-COVID PolicyPredictionCom-parison

马艺菲、许书君、秦瑶、李建涛、雷立健、贺鹭、余红梅、解军

展开 >

山西医科大学公共卫生学院(030001)

山西医科大学管理学院

煤炭环境致病与防治教育部重点实验室

山西医科大学反向病原学中心

展开 >

新型冠状病毒肺炎 SEAIQR模型 Dropout-LSTM模型 动态清零 预测 对比

国家重点研发计划山西省研究生科研创新项目

2021YFC23016032023KY363

2024

中国卫生统计
中国卫生信息学会 中国医科大学

中国卫生统计

CSTPCD北大核心
影响因子:1.172
ISSN:1002-3674
年,卷(期):2024.41(2)
  • 11