首页|全球COVID-19疫情主要预测模型比较分析

全球COVID-19疫情主要预测模型比较分析

扫码查看
目的 新冠感染病死率预测对于深入理解新冠病毒严重性、合理配置医疗资源及开展针对性防疫策略有重大意义.方法 本研究依据新冠病毒变异优势株,将疫情发展划分四个时期,选取美国、印度、巴西、墨西哥、秘鲁、中国六个国家以及全球平均水平的病死率为研究对象.运用灰色模型、指数平滑模型、ARIMA模型、支持向量机、Prophet和LSTM模型六个模型进行拟合预测,探讨各模型的优缺点和适用性,选取效果最优的模型对全球和重点国家的病死率进行预测.结果 模型比较显示多种模型各有优缺点,经预测,多数国家的累计确诊人数和累计死亡人数增长速度减缓,发展趋势逐渐平稳.结论 传统时间序列模型适于发展趋势平稳、有限样本的预测;而机器学习模型更适用于波动型变化数据,可进行大样本预测,进一步外推,运用到其他卫生领域的研究.
Comparative Analysis of Prediction Models of Global COVID-19 Pandemic
Objective The prediction of the fatality rate of COVID-19 pandemic is of great significance for in-depth understanding of the severity of the new coronavirus,rational allocation of medical resources,and targeted epidemic prevention strategies.Methods This study divides the development of the epidemic into four periods based on the dominant strain of the new coronavirus variant.Six countries including the United States,India,Brazil,Mexico,Peru,China,and the global average case fatality rate were selected as study subjects.Six models including the Grey Model,Exponential Smoothing Model,ARIMA,SVM,Prophet and LSTM are used for fitting and forecasting,the advantages,disadvantages and applicability of each model are discussed,and the model with the best effect is selected to forecast the fatality rate in the world and key countries.Results Model comparison shows that various models have their own advantages and disadvantages.It is predicted that the growth rate of the cumulative number of confirmed cases and cumulative deaths in most countries has slowed down,and the development trend has gradually stabilized.Conclusion The study suggests that traditional time series model is suitable for the prediction of stable development trend and limited samples,and the machine learning model is more suitable for fluctuating data,which can be used for large sample predictions.Depending on the features of these models,application can be extended to other fields.

COVID-19Prediction modelsCase fatality rate

陈雅霖、洪秋棉、温昊于、刘艳、喻勇、宇传华

展开 >

武汉大学公共卫生学院流行病与卫生统计学系(430071)

湖北医药学院公共卫生与健康学院

COVID-19 预测模型 病死率

国家自然科学基金面上项目

82173626

2024

中国卫生统计
中国卫生信息学会 中国医科大学

中国卫生统计

CSTPCD北大核心
影响因子:1.172
ISSN:1002-3674
年,卷(期):2024.41(3)
  • 13