首页|基于CT纹理特征的机器学习模型预测尿路结石首次ESWL疗效

基于CT纹理特征的机器学习模型预测尿路结石首次ESWL疗效

扫码查看
目的 探究基于CT纹理特征构建的机器学习模型能否准确评估尿路结石患者首次体外冲击波碎石术(ESWL)的疗效。方法 317 例尿路结石患者,均在首次ESWL术前 2 周接受了非增强多层螺旋CT(MDCT)检查,根据来源分为内部队列(深圳市人民医院,250 例)和外部队列(深圳市罗湖区人民医院,67 例)。通过 3D-UNet算法构建自动化语义分割模型,并计算Dice系数以量化预测分割和真实分割之间的重叠程度。基于CT纹理特征与XGBoost算法构建ESWL对尿路结石疗效的机器学习模型,采用 5 折交叉验证和多中心外部测试策略验证模型的稳定性和泛化性,利用SHAP算法探索每个特征对模型决策的贡献程度。结果 外部队列的平均Dice系数为(0。88±0。08)。对于尿路结石ESWL疗效(成功VS失败)预测模型,5 折交叉验证的受试者工作特征曲线下面积(AUROC)分别为 0。91、0。89、0。87、0。88 和 0。92,准确率分别为 0。84、0。78、0。76、0。81 和 0。84。最优模型的训练集和测试集AUROC分别为 0。92 和 0。84,均在 95%CI内。无论是形态学特征、一阶统计学特征还是纹理特征,所有输入模型的特征在模型的决策中都发挥了一定的作用,灰度相关矩阵高灰度依赖程度(gldm_LDHGLE)、first-order Minimum和shape Elongation在尿路结石行首次ESWL疗效(成功VS失败)的预测模型中发挥了主导作用。结论 基于CT纹理特征所构建的预测模型可以准确评估首次ESWL对尿路结石的疗效。
A machine learning model based on CT texture features for predicting the efficacy of initial ESWL treatment for ureteral stones
Objective To investigate whether a machine learning model based on CT texture features can accurately assess the therapeutic efficacy of the first extracorporeal shock wave lithotripsy(ESWL)in patients with urinary calculi.Methods A total of 317 patients with urinary calculi were included in this study.These patients underwent multidetector CT(MDCT)examination 2 weeks before the first ESWL and were divided into an internal cohort(Shenzhen People's Hospital,250 patients)and an external cohort(Shenzhen Luohu District People's Hospital,67 patients)according to their origin.An automated semantic segmentation model was built using the 3D-UNet algorithm,and the degree of overlap between the predicted segmentation and the real segmentation was quantified by calculating the Dice coefficient.A machine learning model for the therapeutic efficacy of ESWL for urinary calculi was built based on texture features and XGBoost algorithm.Strict five-fold cross-validation and multi-center external testing strategies were employed to verify the stability and generalization performance of the model.Additionally,the SHAP algorithm was used to explore the contribution of each feature to the model decisions.Results The average Dice coefficient of the external cohort was(0.88±0.08).For the prediction model of ESWL efficacy for urinary calculi(Success VS Failure),the area under receiver operating characteristic curve(AUROC)values of the five-fold cross-validation were 0.91,0.89,0.87,0.88,and 0.92,with accuracies of 0.84,0.78,0.76,0.81,and 0.84.The AUROC values of the validation set and test set for the optimal model were 0.92 and 0.84,respectively,both falling within the 95%CI.Whether morphological features,first-order statistical features,or textural features,all the features input to the model played a role in the decision making of the model,and the gray scale correlation matrix with high gray scale dependence(gldm_LDHGLE),first-order Minimum,and shape Elongation played a dominant role in the prediction model of the efficacy of the first ESWL performed for urinary tract stones(Success VS Failure)played a dominant role in the prediction model.Conclusion The prediction model based on CT texture features can accurately assess the therapeutic efficacy of the first ESWL for urinary calculi.

Urinary calculiExtracorporeal shock wave lithotripsyMachine learningDeep learning

王天宇、曾浩扬、刘翰林、柴晓玮、杨忠、黄锦杰、袁浩元、叶姿希、成官迅

展开 >

518000 汕头大学医学院罗湖临床学院(深圳市罗湖区人民医院)放射科

518000 暨南大学第二临床医学院(深圳市人民医院)放射科

518000 北京大学深圳医院放射科

尿路结石 体外冲击波碎石术 机器学习 深度学习

2024

中国现代药物应用
中国水利电力医学科学技术学会

中国现代药物应用

影响因子:0.862
ISSN:1673-9523
年,卷(期):2024.18(22)