首页|基于机器学习算法的二尖瓣修复失败风险因素分析

基于机器学习算法的二尖瓣修复失败风险因素分析

扫码查看
目的:基于机器学习算法建立二尖瓣修复失败风险预测模型,为二尖瓣手术难度评价提供新思路.方法:纳入2009年1月1日至2022年12月31日于中国医学科学院阜外医院接受二尖瓣修复术的2314例退行性二尖瓣反流患者,分析临床资料,以二尖瓣修复即刻失败及二尖瓣修复术后院内复发作为主要结局指标,应用极速梯度提升(XGBoost)模型和沙普利可加性解释模型(SHAP)分析探索二尖瓣修复失败的风险因素,并建立基于混合专家(MoE)的机器学习模型,作为二尖瓣修复失败风险预测模型,并与传统的二尖瓣修复复杂性评分进行对比.结果:2314例患者中,98例(4.2%)患者修复失败.患者自身因素如三尖瓣收缩期压差,A3、A3P3区病变,左心室收缩末期容积,左心房前后径等,均与二尖瓣修复失败风险相关;此外,术者特征相关因素,如术者累积修复失败率、术者累积主刀修复手术量、术者年资,同样是二尖瓣修复失败的风险因素.本研究所构建的基于MoE的机器学习预测模型,ROC曲线的AUC为0.79,预测性能明显优于传统的复杂性评分.结论:基于MoE的机器学习模型可以较好地预测二尖瓣修复失败风险,该评估系统能够有效辅助临床医师评估二尖瓣修复失败的风险,为患者选择适合的治疗方案.
Risk Factor Analysis of Mitral Valve Repair Failure Based on Machine Learning
Objectives:To develop a novel prediction model for mitral valve repair failure based on machine learning algorithms.Methods:Clinical and echocardiographic data were analyzed on patients,who underwent mitral valve repair in Fuwai Hospital from 2009 January 1st to 2022 December 31st.End points included immediate mitral valve repair failure (mitral replacement secondary to mitral repair failure) and recurrence regurgitation (moderate or severe mitral regurgitation before discharge).Risk factors of mitral valve repair failure were analyzed by XGBoost and shapley additive explanation (SHAP),and a machine learning model was established based on mixture of experts (MoE) as a risk prediction model and compared with conventional mitral valve repair complexity scores.Results:A total of 2314 patients were included in this study.Mitral repair was unsuccessful in 4.2% (98 of 2314) of patients.Patient factors such as tricuspid regurgitation pressure gradient,A3 and A3P3 lesions,left ventricular end-systolic volume,and left atrium anterior and posterior diameter are associated with mitral valve repair failure;in addition,surgeon factors,such as cumulative repair failure rate,cumulative repair volume,and surgeon seniority,are also risk factors for mitral valve repair failure.The MoE model has an AUC value of 0.79,and the prediction performance is significantly better than traditional complexity scores.Conclusions:The MoE based machine learning model can predict the risk of mitral valve repair failure well.This evaluation system can effectively assist surgeons in assessing the risk of mitral valve repair failure and in selecting suitable treatment options for patients.

mitral regurgitationmitral valve repairrisk predictionmachine learning

刁晓林、朱坤、夏芸、徐航、郑珊珊、马介旭、杨展、孙兆红、刘盛、赵韡

展开 >

中国医学科学院 北京协和医学院 国家心血管病中心 阜外医院 信息中心,北京 100037

中国医学科学院 北京协和医学院 国家心血管病中心 阜外医院 成人外科中心,北京 100037

二尖瓣反流 二尖瓣修复 风险预测 机器学习

2024

中国循环杂志
中国医学科学院

中国循环杂志

CSTPCD北大核心
影响因子:2.803
ISSN:1000-3614
年,卷(期):2024.39(12)