首页|机器学习算法在药物毒性预测中的应用评价

机器学习算法在药物毒性预测中的应用评价

扫码查看
目的:基于文献计量法评价机器学习算法在药物毒性预测中的应用现状,为相关研究和应用提供参考借鉴,以促进"医药+信息"学科的交叉发展。方法:以"毒性预测"、"定量构效关系(QSAR)"、"计算毒理学"、"机器学习"等为主题词,组合查询发表于中国知网、万方等数据库的相关文献,然后依据"所用算法种类"、"所应用的毒性预测环节"进行归类整理,对机器学习算法在药物毒性预测领域的应用现状进行综述。结果:共检索到相关有效文献122 篇。机器学习已用于药物毒性预测的毒性数据集处理、药物信息表征筛选、预测模型训练等,其中应用于模型训练任务的算法次数与种类相较更多;虽然各种算法在药物毒性预测领域都有研究应用,而以支持向量机算法、随机森林算法与深度学习算法的应用较多;另外,文献多数认为基于深度学习或集成学习的模型预测性能较高。结论:机器学习算法在毒性预测领域中应用种类较多,而选择算法时需考虑的主要问题是数据集规模大小和算法运算速度,对异常数据、冗余数据、噪声数据的适应性以及算法的实现难度等;计算机辅助毒性预测相较传统的体内体外实验有着较多的优势,但仍有部分亟待解决的难题,包括医药数据相关板块的不少空缺、现有数据质量的亟待提升和药物信息表征如何选择等。
Status of application of machine learning algorithm in drug toxicity prediction
Objective:To evaluate the status of the application of machine learning algorithms in drug toxicity prediction based on bibliometric analysis,thus to provide reference for relevant research and application and promote the interdisciplinary development of"medicine +information".Methods:Relevant literature published in databases such as CNKI and Wanfang were searched using keywords such as"toxicity prediction","QSAR","computational toxicology"and"machine learning".The literature was then classified and organized based on the"type of algorithm used"and"toxicity prediction stage to which it was applied".A review was conducted on the status of the application of machine learning algorithms in drug toxicity prediction.Results:A total of 122 relevant and valid articles were retrieved.Machine learning has been used for toxicity data set processing,drug information characterization screening,and prediction model training in drug toxicity prediction.Among them,there were more types and numbers of algorithms used for model training tasks.Various algorithms have been studied and applied in the field of drug toxicity prediction,among which support vector machine algorithm,random forest algorithm,and deep learning algorithm were the most commonly used.Furthermore,most literature indicated that models based on deep learning or ensemble learning had higher predictive performance.Conclusion:Machine learning algorithms have been widely used in the field of toxicity prediction.The main considerations when selecting an algorithm include the size of the dataset,algorithm processing speed,adaptability to outlier data,redundant data,and noisy data,as well as the implementation difficulty of the algorithm.Computer-aided toxicity prediction has many advantages over traditional in vivo and in vitro experiments.However,there are still some challenges that need to be addressed,including several gaps in the medical data-related fields,the urgent need to improve the quality of existing data,and the selection of drug information characterization methods.

machine learningdrug toxicity predictioncomputational toxicologyquantitative structure activity relationship

章新友、陈豪、王芝、李雪梅、徐华康、张亚明、周小玲、吴地尧

展开 >

江西中医药大学计算机学院,南昌 330004

机器学习 药物毒性预测 计算毒理学 定量构效关系

国家自然科学基金江西省中医药局癌病方证信息数据挖掘重点研究室项目江西省中医药局科技重点项目

81660727ZDYJS2022022022Z007

2024

中国新药杂志
中国医药科技出版社 中国医药集团总公司 中国药学会

中国新药杂志

CSTPCD北大核心
影响因子:1.039
ISSN:1003-3734
年,卷(期):2024.33(2)
  • 58