首页|相似性算法在药物-靶点预测研究中的应用

相似性算法在药物-靶点预测研究中的应用

扫码查看
药物从研发到临床应用是漫长而昂贵的过程,通过相似性算法和机器学习算法准确预测药物-靶点相互作用(drug-target interactions,DTI)辅助药物研发可以提升效率、降低成本。本文对相似性算法在DTI预测研究中的应用进行全面分析,旨在为进一步运用相似性算法对DTI预测研究有所借鉴。利用中国知网、PubMed、万方数据和维普网等作为主要文献检索平台,整理近10 年基于相似性的DTI预测研究文献并建立研究对象文献数据库,在DTI预测问题中对数据来源、药物和靶点的相似性构建算法、DTI预测算法模型进行归纳总结。整理得到55 篇质量较高相关文献,显示药物相似性主要由化学结构、不良反应、解剖-治疗-化学代码(anatomical therapeutic chemical,ATC)和DTI关系的数据来构建;靶点相似性主要由蛋白质序列和基因本体(gene ontology,GO)注释的数据来构建。不同的数据可用不同的相似性算法度量其相似,整合多源相似性数据可以进一步提高模型的质量。DTI预测算法模型主要有基于分类、基于网络和基于矩阵分解的预测模型,不同的预测模型各有其优缺点。利用算法辅助DTI预测研究具有极大发展潜力,它缩小了候选药物及靶点分子的范围,但仍有部分亟待解决的难题,未来可以从优化数据和改进算法模型两方面对该问题进一步研究。
Application of similarity algorithms in drug-target prediction
Objective:It is a long and costly process from drug development to its clinical application.Using the similarity algorithm and machine learning algorithm to accurately predict drug-target interactions(DTI)can effectively assist drug research and development,and so forth improve efficiency and reduce costs.In order to provide a reference for the further study of drug-target prediction using the similarity algorithm,this paper makes a comprehensive analysis on the application of similarity algorithm in the study of drug-target prediction.Methods:The main literature retrieval platforms of China National Knowledge Infrastructure(CNKI),PubMed,Wanfang Data and VIP Network were used in this study.The similarity-based drug-target prediction research literature in the past ten years were collected and a database of literature on research subjects was established.We summarized the data sources,similarity construction algorithms of drugs and targets,and DTI prediction algorithm models in the drug-target prediction.Results:55 papers of high quality were collected,the results of which showed that the drug similarity is mainly constructed by the data of chemical structure,side effects,Anatomical Therapeutic Chemical(ATC)code and drug-target relationship.And target similarity is mainly constructed by the protein sequence and Gene Ontology(GO)annotation data.Different data can be measured by different similarity algorithms.Integrating multi-source similarity data can further improve the quality of the model.Drug-target interaction prediction algorithm models mainly include prediction models based on classification,network and matrix decomposition.Different prediction models have their respective advantages and disadvantages.Conclusion:It is concluded that drug-target prediction research has great developmental potential for by use of algorithm-assisted.It can help reduce the range of candidate drugs and target molecules,but some problems still remain unsolved.In the future,we need to further study this problem from two aspects:data optimization and algorithm model improvement.

similarity algorithmsdrug-targetprediction researchliterature analysis

章新友、王芝、张春强、陈豪、李雪梅、张亚明、周小玲

展开 >

江西中医药大学计算机学院,南昌 330004

相似性算法 药物-靶点 预测研究 文献分析法

国家自然科学基金资助项目国家自然科学基金资助项目江西省中医药管理局癌病方证信息数据挖掘重点研究室项目江西省中医药管理局科技计划重点项目

8236099281660727ZDYJS2022022022Z007

2024

中国新药杂志
中国医药科技出版社 中国医药集团总公司 中国药学会

中国新药杂志

CSTPCD北大核心
影响因子:1.039
ISSN:1003-3734
年,卷(期):2024.33(9)
  • 68