首页|人工智能敏捷治理实践:分类监管思路与政策工具箱构建

人工智能敏捷治理实践:分类监管思路与政策工具箱构建

扫码查看
纷繁复杂的人工智能应用风险在带来监管挑战的同时,也让追求敏捷成为当前人工智能治理的共识性理念.但如何在具体路径、机制、工具上实现真正的敏捷监管尚缺乏系统的学理分析与实践指引.遵循科层体系运作逻辑的监管部门在克服制度张力和应对不确定性方面存在天然不足,实践改革因此普遍将"分类"视为一种适应复杂性与提升敏捷性的潜在思路.通过对人工智能多领域业态发展模式与技术创新规律的比较分析,以及综合人工智能各领域现有国际治理经验,本文构建了人工智能治理风险的关键分类维度及与之相适应的全谱系政策工具箱.研究试图为监管实践者提供一个合意的分类思路与政策工具组合指引,使监管实践可从产业特征标定分类治理对象,并在对应的政策工具箱中寻找政策组合.
Agile Governance Practices in Artificial Intelligence:Categorizing Regulatory Approaches and Constructing a Policy Toolbox
The diverse and complex risks associated with artificial intelligence applications present regulatory challenges,emphasizing the need for agility in current AI governance.However,there is still a lack of systematic theoretical analysis and practical guidance on achieving agile regulation in terms of specific paths,mechanisms,and tools.Regulatory agencies,often constrained by bureaucratic approaches,face difficulties in responding to uncertainties.As a result,practical reforms often consider"classification"as a potential approach to adapt to complexity and enhance agility.Through a comparative analysis of AI development across diverse domains,along with a comprehensive review of international experiences,this paper establishes the dimensions for classifying AI governance risks and corresponding policy toolboxes.The study aims to provide regulatory practitioners a concise classification framework and a guide for combining policy tools.This enables regulatory practices to identify and categorize governance targets based on industry characteristics and locate suitable policy combinations within the corresponding toolbox.

artificial intelligence governanceclassification governanceagile governance toolbox

薛澜、贾开、赵静

展开 >

清华大学苏世民书院

清华大学公共管理学院,北京 100084

上海交通大学国际与公共事务学院

清华大学产业发展与环境治理研究中心

展开 >

人工智能治理 分类治理 敏捷治理工具箱

国家社会科学基金清华大学自主科研项目清华大学-丰田基金专项

23BGL2442021THZWJC12

2024

中国行政管理
中国行政管理学会

中国行政管理

CSTPCDCSSCICHSSCD北大核心
影响因子:2.082
ISSN:1006-0863
年,卷(期):2024.40(3)
  • 40